ﻻ يوجد ملخص باللغة العربية
We review the measurements of magnetic fields of OBA stars. Based on these data we confirm that magnetic fields are distributed according to a lognormal law with a mean log(B)=-0.5 (B in kG) with a standard deviation sigma=0.5. The shape of the magnetic field distribution is similar to that for neutron stars. This finding is in favor of the hypothesis that the magnetic field of a neutron star is determined mainly by the magnetic field of its predecessor, the massive OB star. Further, we model the evolution of an ensemble of magnetic massive stars in the Galaxy. We use our own population synthesis code to obtain the distribution of stellar radii, ages, masses, temperatures, effective magnetic fields and magnetic fluxes from the pre-main sequence (PMS) via zero age main sequence (ZAMS) up to the terminal age main sequence (TAMS) stages. A comparison of the obtained in our model magnetic field distribution (MFD) with that obtained from the recent measurements of the stellar magnetic field allows us to conclude that the evolution of magnetic fields of massive stars is slow if not absent. The shape of the real MFD shows no indications of the magnetic desert proposed previously. Based on this finding we argue that the observed fraction of magnetic stars is determined by physical conditions at the PMS stage of stellar evolution.
We review the measurements of magnetic fields of OB stars and compile a catalog of magnetic OB stars. Based on available data we confirm that magnetic field values are distributed according to a log--normal law with a mean log(B)=2.53 and a standard
Theories on the origin of magnetic fields in massive stars remain poorly developed, because the properties of their magnetic field as function of stellar parameters could not yet be investigated. To investigate whether magnetic fields in massive st
The flow of a matter, accreting onto a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of t
We propose a general method to self-consistently study the quasistationary evolution of the magnetic field in the cores of neutron stars. The traditional approach to this problem is critically revised. Our results are illustrated by calculation of th
About 10% of hot stars host a fossil magnetic field on the pre-main sequence and main sequence. However, the first magnetic evolved hot stars have been discovered only recently. An observing program has been set up to find more such objects. This wil