ﻻ يوجد ملخص باللغة العربية
We use the recently-developed Heat-bath Configuration Interaction (HCI) algorithm as an efficient active-space solver to perform multi-configuration self-consistent field calculations (HCISCF) with large active spaces. We give a detailed derivation of the theory and show that difficulties associated with non-variationality of the HCI procedure can be overcome by making use of the Lagrangian formulation to calculate the HCI relaxed two body reduced density matrix. HCISCF is then used to study the electronic structure of butadiene, pentacene, and Fe-porphyrin. One of the most striking results of our work is that the converged active space orbitals obtained from HCISCF are relatively insensitive to the accuracy of the HCI calculation. This allows us to obtain nearly converged CASSCF energies with an estimated error of less than 1 mHa using the orbitals obtained from the HCISCF procedure in which the integral transformation is the dominant cost. For example, an HCISCF calculation on Fe-Porphyrin model complex with an active space of (44e, 44o) took only 412 seconds per iteration on a single node containing 28 cores, out of which 185 seconds were spent in the HCI calculation and the remaining 227 seconds were mainly used for integral transformation. Finally, we also show that active-space orbitals can be optimized using HCISCF to substantially speed up the convergence of the HCI energy to the Full CI limit because HCI is not invariant to unitary transformations within the active space.
We identify the dominant computational cost within the recently introduced stochastic and internally contracted FCIQMC-NEVPT2 method for large active space sizes. This arises from the contribution to the four-body intermediates arising from low-excit
Full Configuration Interaction Quantum Monte Carlo (FCIQMC) has been effectively applied to very large configuration interaction (CI) problems, and was recently adapted for use as an active space solver and combined with orbital optimisation. In this
In approximate density functional theory (DFT), the self-interaction error is an electron delocalization anomaly associated with underestimated insulating gaps. It exhibits a predominantly quadratic energy-density curve that is amenable to correction
Reliable quantum chemical methods for the description of molecules with dense-lying frontier orbitals are needed in the context of many chemical compounds and reactions. Here, we review developments that led to our newcomputational toolbo x which imp
A formal analysis is conducted on the exactness of various forms of unitary coupled cluster (UCC) theory based on particle-hole excitation and de-excitation operators. Both the conventional single exponential UCC parameterization and a disentangled (