ﻻ يوجد ملخص باللغة العربية
The effective chiral model is extended by introducing the contributions from the cross-couplings between isovector and isoscalar mesons. These cross-couplings are found to be instrumental in improving the density content of the nuclear symmetry energy. The nuclear symmetry energy as well as its slope and curvature parameters at the saturation density are in harmony with those deduced from a diverse set of experimental data. The equation of state for pure neutron matter at sub-saturation densities is also in accordance with the ones obtained from different microscopic models. The maximum mass of neutron star is consistent with the measurement and the radius at the canonical mass of the neutron star is within the empirical bounds.
We derive a microscopic relativistic point-coupling model of nuclear many-body dynamics constrained by in-medium QCD sum rules and chiral symmetry. The effective Lagrangian is characterized by density dependent coupling strengths, determined by chira
We systematically investigate the vacuum stability and nuclear properties in the effective chiral model with higher order terms in $sigma$. We evaluate the model parameters by considering the saturation properties of nuclear matter as well as the nor
We review the main achievements of the research programme for the study of nuclear forces in the framework of chiral symmetry and discuss some problems which are still open.
We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by
The nuclear symmetry energy is a key quantity in nuclear (astro)physics. It describes the isospin dependence of the nuclear equation of state (EOS), which is commonly assumed to be almost quadratic. In this work, we confront this standard quadratic e