ﻻ يوجد ملخص باللغة العربية
Deep neural networks (DNNs) have demonstrated impressive performance on a wide array of tasks, but they are usually considered opaque since internal structure and learned parameters are not interpretable. In this paper, we re-examine the internal representations of DNNs using adversarial images, which are generated by an ensemble-optimization algorithm. We find that: (1) the neurons in DNNs do not truly detect semantic objects/parts, but respond to objects/parts only as recurrent discriminative patches; (2) deep visual representations are not robust distributed codes of visual concepts because the representations of adversarial images are largely not consistent with those of real images, although they have similar visual appearance, both of which are different from previous findings. To further improve the interpretability of DNNs, we propose an adversarial training scheme with a consistent loss such that the neurons are endowed with human-interpretable concepts. The induced interpretable representations enable us to trace eventual outcomes back to influential neurons. Therefore, human users can know how the models make predictions, as well as when and why they make errors.
Deep networks for Monocular Depth Estimation (MDE) have achieved promising performance recently and it is of great importance to further understand the interpretability of these networks. Existing methods attempt to provide posthoc explanations by in
Adversarial examples (AEs) are images that can mislead deep neural network (DNN) classifiers via introducing slight perturbations into original images. This security vulnerability has led to vast research in recent years because it can introduce real
Recent development of adversarial attacks has proven that ensemble-based methods outperform traditional, non-ensemble ones in black-box attack. However, as it is computationally prohibitive to acquire a family of diverse models, these methods achieve
Convolutional neural networks (CNNs) have been successfully used in a range of tasks. However, CNNs are often viewed as black-box and lack of interpretability. One main reason is due to the filter-class entanglement -- an intricate many-to-many corre
With further development in the fields of computer vision, network security, natural language processing and so on so forth, deep learning technology gradually exposed certain security risks. The existing deep learning algorithms cannot effectively d