ﻻ يوجد ملخص باللغة العربية
The reduction of the thermal conductivity in nanostructures opens up the possibility of exploiting for thermoelectric purposes also materials such as silicon, which are cheap, available and sustainable but with a high thermal conductivity in their bulk form. The development of thermoelectric devices based on these innovative materials requires reliable techniques for the measurement of thermal conductivity on a nanometric scale. The approximations introduced by conventional techniques for thermal conductivity measurements can lead to unreliable results when applied to nanostructures, because heaters and temperature sensors needed for the measurement cannot have a negligible size, and therefore perturb the result. In this paper we focus on the 3$omega$ technique, applied to the thermal conductivity measurement of suspended silicon nanomembranes. To overcome the approximations introduced by conventional analytical models used for the interpretation of the 3$omega$ data, we propose to use a numerical solution, performed by means of finite element modeling, of the thermal and electrical transport equations. An excellent fit of the experimental data will be presented, discussed, and compared with an analytical model.
We study by scanning thermal microscopy the nanoscale thermal conductance of films (40 to 400 nm thick) of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT-C8). We demonstrate that the out-o
Establishment of a new technique or extension of an existing technique for thermal and thermoelectric measurements to a more challenging system is an important task to explore the thermal and thermoelectric properties of various materials and systems
We analyze the benefits and shortcomings of a thermal control in nanoscale electronic conductors by means of the contact heating scheme. Ideally, this straightforward approach allows one to apply a known thermal bias across nanostructures directly th
Knowledge of the mean free path distribution of heat-carrying phonons is key to understanding phonon-mediated thermal transport. We demonstrate that thermal conductivity measurements of thin membranes spanning a wide thickness range can be used to ch
We study the size dependence of thermal conductivity in nanoscale semiconducting systems. An analytical formula including the surface scattering and the size confinement effects of phonon transport is derived. The theoretical formula gives good agree