ﻻ يوجد ملخص باللغة العربية
We study the spectrum of permutation orbifolds of 2d CFTs. We find examples where the light spectrum grows faster than Hagedorn, which is different from known cases such as symmetric orbifolds. We also describe how to compute their partition functions using a generalization of Hecke operators.
We study orbifolds by permutations of two identical N=2 minimal models within the Gepner construction of four dimensional heterotic strings. This is done using the new N=2 supersymmetric permutation orbifold building blocks we have recently developed
We carry out a systematic study of primary operators in the conformal field theory of a free Weyl fermion. Using SO(4,2) characters we develop counting formulas for primaries constructed using a fixed number of fermion fields. By specializing to part
In this paper we apply the previously derived formalism of permutation orbifold conformal field theories to N=2 supersymmetric minimal models. By interchanging extensions and permutations of the factors we find a very interesting structure relating v
We apply the methods of homology and K-theory for branes wrapping spaces stratified fibered over hyperbolic orbifolds. In addition, we discuss the algebraic K-theory of any discrete co-compact Lie group in terms of appropriate homology and Atiyah-Hir
We develop the formalism of quantum mechanics on three dimensional fuzzy space and solve the Schrodinger equation for a free particle, finite and infinite fuzzy wells. We show that all results reduce to the appropriate commutative limits. A high ener