ﻻ يوجد ملخص باللغة العربية
The existence and topological classification of lower-dimensional Fermi surfaces is often tied to the crystal symmetries of the underlying lattice systems. Artificially engineered lattices, such as heterostructures and other superlattices, provide promising avenues to realize desired crystal symmetries that protect lower-dimensional Fermi surface, such as nodal lines. In this work, we investigate a Weyl semimetal subjected to spatially periodic onsite potential, giving rise to several phases, including a nodal-line semimetal phase. In contrast to proposals that purely focus on lattice symmetries, the emergence of the nodal line in this setup does not require small spin-orbit coupling, but rather relies on its presence. We show that the stability of the nodal line is understood from reflection symmetry and a combination of a fractional lattice translation and charge-conjugation symmetry. Depending on the choice of parameters, this model exhibits drumhead surface states that are exponentially localized at the surface, or weakly localized surface states that decay into the bulk at all energies.
We review the recent, mainly theoretical, progress in the study of topological nodal line semimetals in three dimensions. In these semimetals, the conduction and the valence bands cross each other along a one-dimensional curve in the three-dimensiona
Superconducting Weyl semimetals present a novel and promising system to harbor new forms of unconventional topological superconductivity. Within the context of time-reversal symmetric Weyl semimetals with $d$-wave superconductivity, we demonstrate th
We study the frequency-dependent conductivity of nodal line semimetals (NLSMs), focusing on the effects of carrier density and energy dispersion on the nodal line. We find that the low-frequency conductivity has a rich spectral structure which can be
Electrons with large kinetic energy have a superconducting instability for infinitesimal attractive interactions. Quenching the kinetic energy and creating a flat band renders an infinitesimal repulsive interaction the relevant perturbation. Thus, fl
Lattice deformations act on the low-energy excitations of Dirac materials as effective axial vector fields. This allows to directly detect quantum anomalies of Dirac materials via the response to axial gauge fields. We investigate the parity anomaly