ترغب بنشر مسار تعليمي؟ اضغط هنا

An ultrahot gas-giant exoplanet with a stratosphere

76   0   0.0 ( 0 )
 نشر من قبل Thomas Evans
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum. Conversely, if there is a stratosphere - where temperature increases with altitude - these molecular features will be observed in emission. It has been suggested that stratospheres could form in highly irradiated exoplanets, but the extent to which this occurs is unresolved both theoretically and observationally. A previous claim for the presence of a stratosphere remains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5-sigma confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.



قيم البحث

اقرأ أيضاً

Transiting extrasolar planets are key objects in the study of the formation, migration, and evolution of planetary systems. In particular, the exploration of the atmospheres of giant planets, through transmission spectroscopy or direct imaging, has r evealed a large diversity in their chemical composition and physical properties. Studying these giant planets allows one to test the global climate models that are used for the Earth and other solar system planets. However, these studies are mostly limited either to highly-irradiated transiting giant planets or directly-imaged giant planets at large separations. Here we report the physical characterisation of the planets in a bright multi-planetary system (HIP41378) in which the outer planet, HIP41378 f is a Saturn-sized planet (9.2 $pm$ 0.1 R$_oplus$) with an anomalously low density of 0.09 $pm$ 0.02 g cm$^{-3}$ that is not yet understood. Its equilibrium temperature is about 300 K. Therefore, it represents a planet with a mild temperature, in between the hot Jupiters and the colder giant planets of the Solar System. It opens a new window for atmospheric characterisation of giant exoplanets with a moderate irradiation, with the next-generation space telescopes such as JWST and ARIEL as well as the extremely-large ground-based telescopes. HIP41378 f is thus an important laboratory to understand the effect of the irradiation on the physical properties and chemical composition of the atmosphere of planets.
Ultra-hot giant exoplanets receive thousands of times Earths insolation. Their high-temperature atmospheres (>2,000 K) are ideal laboratories for studying extreme planetary climates and chemistry. Daysides are predicted to be cloud-free, dominated by atomic species and substantially hotter than nightsides. Atoms are expected to recombine into molecules over the nightside, resulting in different day-night chemistry. While metallic elements and a large temperature contrast have been observed, no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night (evening) and night-to-day (morning) terminators could, however, be revealed as an asymmetric absorption signature during transit. Here, we report the detection of an asymmetric atmospheric signature in the ultra-hot exoplanet WASP-76b. We spectrally and temporally resolve this signature thanks to the combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by -11+/-0.7 km s-1 on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside. In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. Iron must thus condense during its journey across the nightside.
Most of our knowledge of extrasolar planets rests on precise radial-velocity measurements, either for direct detection or for confirmation of the planetary origin of photometric transit signals. This has limited our exploration of the parameter space of exoplanet hosts to solar- and later-type, sharp-lined stars. Here we extend the realm of stars with known planetary companions to include hot, fast-rotating stars. Planet-like transits have previously been reported in the lightcurve obtained by the SuperWASP survey of the A5 star HD15082 (WASP-33; V=8.3, v sin i = 86 km/sec). Here we report further photometry and time-series spectroscopy through three separate transits, which we use to confirm the existence of a gas giant planet with an orbital period of 1.22d in orbit around HD15082. From the photometry and the properties of the planet signal travelling through the spectral line profiles during the transit we directly derive the size of the planet, the inclination and obliquity of its orbital plane, and its retrograde orbital motion relative to the spin of the star. This kind of analysis opens the way to studying the formation of planets around a whole new class of young, early-type stars, hence under different physical conditions and generally in an earlier stage of formation than in sharp-lined late-type stars. The reflex orbital motion of the star caused by the transiting planet is small, yielding an upper mass limit of 4.1 Jupiter masses on the planet. We also find evidence of a third body of sub-stellar mass in the system, which may explain the unusual orbit of the transiting planet. In HD 15082, the stellar line profiles also show evidence of non-radial pulsations, clearly distinct from the planetary transit signal. This raises the intriguing possibility that tides raised by the close-in planet may excite or amplify the pulsations in such stars.
The Earth, Venus, Mars, and some extrasolar terrestrial planets have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle. At the inner frontier of the solar system, Mercury has a completely dif ferent composition, with a mass fraction of about 70% metallic core and 30% silicate mantle. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact, mantle evaporation, or the depletion of silicate at the inner-edge of the proto-planetary disk. These scenarios are still strongly debated. Here we report the discovery of a multiple transiting planetary system (K2-229), in which the inner planet has a radius of 1.165+/-0.066 Rearth and a mass of 2.59+/-0.43 Mearth. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, while it was expected to be similar to that of the Earth based on host-star chemistry. This larger Mercury analogue either formed with a very peculiar composition or it has evolved since, e.g. by losing part of its mantle. Further characterisation of Mercury-like exoplanets like K2-229 b will help putting the detailed in-situ observations of Mercury (with Messenger and BepiColombo) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.
Radiative-transfer (RT) is a fundamental part of modelling exoplanet atmospheres with general circulation models (GCMs). An accurate RT scheme is required for estimates of the atmospheric energy transport and for gaining physical insight from model s pectra. We implement three RT schemes for Exo-FMS: semi-grey, non-grey `picket fence, and real gas with correlated-k. We benchmark the Exo-FMS GCM using these RT schemes to hot Jupiter simulation results from the literature. We perform a HD 209458b-like simulation with the three schemes and compare their results. These simulations are then post-processed to compare their observable differences. The semi-grey scheme results show qualitative agreement with previous studies in line with variations seen between GCM models. The real gas model reproduces well the temperature and dynamical structures from other studies. After post-processing our non-grey picket fence scheme compares very favourably with the real gas model, producing similar transmission spectra, emission spectra and phase curve behaviours. Exo-FMS is able to reliably reproduce the essential features of contemporary GCM models in the hot gas giant regime. Our results suggest the picket fence approach offers a simple way to improve upon RT realism beyond semi-grey schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا