ﻻ يوجد ملخص باللغة العربية
Classical results and recent developments on the theoretical description of elementary particles with continuous spin are reviewed. At free level, these fields are described by unitary irreducible representations of the isometry group (either Poincare or anti de Sitter group) with an infinite number of physical degrees of freedom per spacetime point. Their basic group-theoretical and field-theoretical descriptions are reviewed in some details. We mention a list of open issues which are crucial to address for assessing their physical status and potential relevance.
We extend the quantum-mechanical results of Muller & Saunders (2008) establishing the weak discernibility of an arbitrary number of similar fermions in finite-dimensional Hilbert-spaces in two ways: (a) from fermions to bosons for all finite-dimensio
On the basis of the three fundamental principles of (i) Poincar{e} symmetry of space time, (ii) electromagnetic gauge symmetry, and (iii) unitarity, we construct an universal Lagrangian for the electromagnetic interactions of elementary vector partic
We carry out a constructive review of non-standard solutions of relativistic wave equations. Such solutions are obtained via splitting of relativistic wave equations written in spinor form. All these solutions are also solutions of the Dirac equation
It is generally believed that dispersive polarimetric detection of collective angular momentum in large atomic spin systems gives rise to: squeezing in the measured observable, anti-squeezing in a conjugate observable, and collective spin eigenstates
Action principles for the single and double valued continuous-spin representations of the Poincare group have been recently proposed in a Segal-like formulation. We address three related issues: First, we explain how to obtain these actions directly