ﻻ يوجد ملخص باللغة العربية
This paper presents an approach for recognizing human activities from extreme low resolution (e.g., 16x12) videos. Extreme low resolution recognition is not only necessary for analyzing actions at a distance but also is crucial for enabling privacy-preserving recognition of human activities. We design a new two-stream multi-Siamese convolutional neural network. The idea is to explicitly capture the inherent property of low resolution (LR) videos that two images originated from the exact same scene often have totally different pixel values depending on their LR transformations. Our approach learns the shared embedding space that maps LR videos with the same content to the same location regardless of their transformations. We experimentally confirm that our approach of jointly learning such transform robust LR video representation and the classifier outperforms the previous state-of-the-art low resolution recognition approaches on two public standard datasets by a meaningful margin.
Privacy protection from surreptitious video recordings is an important societal challenge. We desire a computer vision system (e.g., a robot) that can recognize human activities and assist our daily life, yet ensure that it is not recording video tha
Extreme Learning Machine is a powerful classification method very competitive existing classification methods. It is extremely fast at training. Nevertheless, it cannot perform face verification tasks properly because face verification tasks require
Deep learning models for human activity recognition (HAR) based on sensor data have been heavily studied recently. However, the generalization ability of deep models on complex real-world HAR data is limited by the availability of high-quality labele
Current face recognition tasks are usually carried out on high-quality face images, but in reality, most face images are captured under unconstrained or poor conditions, e.g., by video surveillance. Existing methods are featured by learning data unce
We learn, in an unsupervised way, an embedding from sequences of radar images that is suitable for solving place recognition problem using complex radar data. We experiment on 280 km of data and show performance exceeding state-of-the-art supervised