ترغب بنشر مسار تعليمي؟ اضغط هنا

Measures of maximal entropy for suspension flows over the full shift

127   0   0.0 ( 0 )
 نشر من قبل Daniel J. Thompson
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider suspension flows with continuous roof function over the full shift $Sigma$ on a finite alphabet. For any positive entropy subshift of finite type $Y subset Sigma$, we explictly construct a roof function such that the measure(s) of maximal entropy for the suspension flow over $Sigma$ are exactly the lifts of the measure(s) of maximal entropy for $Y$. In the case when $Y$ is transitive, this gives a unique measure of maximal entropy for the flow which is not fully supported. If $Y$ has more than one transitive component, all with the same entropy, this gives explicit examples of suspension flows over the full shift with multiple measures of maximal entropy. This contrasts with the case of a Holder continuous roof function where it is well known the measure of maximal entropy is unique and fully supported.



قيم البحث

اقرأ أيضاً

Given a compact topological dynamical system (X, f) with positive entropy and upper semi-continuous entropy map, and any closed invariant subset $Y subset X$ with positive entropy, we show that there exists a continuous roof function such that the se t of measures of maximal entropy for the suspension semi-flow over (X,f) consists precisely of the lifts of measures which maximize entropy on Y. This result has a number of implications for the possible size of the set of measures of maximal entropy for topological suspension flows. In particular, for a suspension flow on the full shift on a finite alphabet, the set of ergodic measures of maximal entropy may be countable, uncountable, or have any finite cardinality.
Let $Lambda$ be a complex manifold and let $(f_lambda)_{lambdain Lambda}$ be a holomorphic family of rational maps of degree $dgeq 2$ of $mathbb{P}^1$. We define a natural notion of entropy of bifurcation, mimicking the classical definition of entrop y, by the parametric growth rate of critical orbits. We also define a notion a measure-theoretic bifurcation entropy for which we prove a variational principle: the measure of bifurcation is a measure of maximal entropy. We rely crucially on a generalization of Yomdins bound of the volume of the image of a dynamical ball. Applying our technics to complex dynamics in several variables, we notably define and compute the entropy of the trace measure of the Green currents of a holomorphic endomorphism of $mathbb{P}^k$.
For a large class of irreducible shift spaces $XsubsettA^{Z^d}$, with $tA$ a finite alphabet, and for absolutely summable potentials $Phi$, we prove that equilibrium measures for $Phi$ are weak Gibbs measures. In particular, for $d=1$, the result holds for irreducible sofic shifts.
Let ${T^t}$ be a smooth flow with positive speed and positive topological entropy on a compact smooth three dimensional manifold, and let $mu$ be an ergodic measure of maximal entropy. We show that either ${T^t}$ is Bernoulli, or ${T^t}$ is isomorphi c to the product of a Bernoulli flow and a rotational flow. Applications are given to Reeb flows.
126 - J.-C. Ban , C.-H. Chang , W.-G. Hu 2021
This paper deals with the topological entropy for hom Markov shifts $mathcal{T}_M$ on $d$-tree. If $M$ is a reducible adjacency matrix with $q$ irreducible components $M_1, cdots, M_q$, we show that $h(mathcal{T}_{M})=max_{1leq ileq q}h(mathcal{T}_{M _{i}})$ fails generally, and present a case study with full characterization in terms of the equality. Though that it is likely the sets ${h(mathcal{T}_{M}):Mtext{ is binary and irreducible}}$ and ${h(mathcal{T}_{X}):Xtext{ is a one-sided shift}}$ are not coincident, we show the two sets share the common closure. Despite the fact that such closure is proved to contain the interval $[d log 2, infty)$, numerical experiments suggest its complement contain open intervals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا