ترغب بنشر مسار تعليمي؟ اضغط هنا

The inverse eigenvalue problem of a graph: Multiplicities and minors

73   0   0.0 ( 0 )
 نشر من قبل Jephian C.-H. Lin
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The inverse eigenvalue problem of a given graph $G$ is to determine all possible spectra of real symmetric matrices whose off-diagonal entries are governed by the adjacencies in $G$. Barrett et al. introduced the Strong Spectral Property (SSP) and the Strong Multiplicity Property (SMP) in [8]. In that paper it was shown that if a graph has a matrix with the SSP (or the SMP) then a supergraph has a matrix with the same spectrum (or ordered multiplicity list) augmented with simple eigenvalues if necessary, that is, subgraph monotonicity. In this paper we extend this to a form of minor monotonicity, with restrictions on where the new eigenvalues appear. These ideas are applied to solve the inverse eigenvalue problem for all graphs of order five, and to characterize forbidden minors of graphs having at most one multiple eigenvalue.



قيم البحث

اقرأ أيضاً

The inverse eigenvalue problem of a graph $G$ aims to find all possible spectra for matrices whose $(i,j)$-entry, for $i eq j$, is nonzero precisely when $i$ is adjacent to $j$. In this work, the inverse eigenvalue problem is completely solved for a subfamily of clique-path graphs, in particular for lollipop graphs and generalized barbell graphs. For a matrix $A$ with associated graph $G$, a new technique utilizing the strong spectral property is introduced, allowing us to construct a matrix $A$ whose graph is obtained from $G$ by appending a clique while arbitrary list of eigenvalues is added to the spectrum. Consequently, many spectra are shown realizable for block graphs.
134 - Benjamin Moore 2017
In 2009, Brown gave a set of conditions which when satisfied imply that a Feynman integral evaluates to a multiple zeta value. One of these conditions is called reducibility, which loosely says there is an order of integration for the Feynman integra l for which Browns techniques will succeed. Reducibility can be abstracted away from the Feynman integral to just being a condition on two polynomials, the first and second Symanzik polynomials. These polynomials can be defined from graphs, and thus reducibility is a property of graphs. We prove that for a fixed number of external momenta and no masses, reducibility is graph minor closed, correcting the previously claimed proofs of this fact. A computational study of reducibility was undertaken by Bogner and L{u}ders who found that for graphs with $4$-on-shell momenta and no masses, $K_{4}$ with momenta on each vertex is a forbidden minor. We add to this and find that when we restrict to graphs with four on-shell external momenta the following graphs are forbidden minors: $K_{4}$ with momenta on each vertex, $W_{4}$ with external momenta on the rim vertices, $K_{2,4}$ with external momenta on the large side of the bipartition, and one other graph. We do not expect that these minors characterize reducibility, so instead we give structural characterizations of the graphs not containing subsets of these minors. We characterize graphs not containing a rooted $K_{4}$ or rooted $W_{4}$ minor, graphs not containing rooted $K_{4}$ or rooted $W_{4}$ or rooted $K_{2,4}$ minors, and also a characterization of graphs not containing all of the known forbidden minors. Some comments are made on graphs not containing $K_{3,4}$, $K_{6}$ or a graph related to Wagners graph as a minor.
Given a graph $G$, one may ask: What sets of eigenvalues are possible over all weighted adjacency matrices of $G$? (The weight of an edge is positive or negative, while the diagonal entries can be any real numbers.) This is known as the Inverse Eigen value Problem for graphs (IEP-$G$). A mild relaxation of this question considers the multiplicity list instead of the exact eigenvalues themselves. That is, given a graph $G$ on $n$ vertices and an ordered partition $mathbf{m}= (m_1, ldots, m_ell)$ of $n$, is there a weighted adjacency matrix where the $i$-th distinct eigenvalue has multiplicity $m_i$? This is known as the ordered multiplicity IEP-$G$. Recent work solved the ordered multiplicity IEP-$G$ for all graphs on 6 vertices. In this work, we develop zero forcing methods for the ordered multiplicity IEP-$G$ in a multitude of different contexts. Namely, we utilize zero forcing parameters on powers of graphs to achieve bounds on consecutive multiplicities. We are able to provide general bounds on sums of multiplicities of eigenvalues for graphs. This includes new bounds on the the sums of multiplicities of consecutive eigenvalues as well as more specific bounds for trees. Using these results, we verify the previous results above regarding the IEP-$G$ on six vertices. In addition, applying our techniques to skew-symmetric matrices, we are able to determine all possible ordered multiplicity lists for skew-symmetric matrices for connected graphs on five vertices.
For a graph $G$, we associate a family of real symmetric matrices, $mathcal{S}(G)$, where for any $M in mathcal{S}(G)$, the location of the nonzero off-diagonal entries of $M$ are governed by the adjacency structure of $G$. The ordered multiplicity I nverse Eigenvalue Problem of a Graph (IEPG) is concerned with finding all attainable ordered lists of eigenvalue multiplicities for matrices in $mathcal{S}(G)$. For connected graphs of order six, we offer significant progress on the IEPG, as well as a complete solution to the ordered multiplicity IEPG. We also show that while $K_{m,n}$ with $min(m,n)ge 3$ attains a particular ordered multiplicity list, it cannot do so with arbitrary spectrum.
A class of graphs is $chi$-bounded if there exists a function $f:mathbb Nrightarrow mathbb N$ such that for every graph $G$ in the class and an induced subgraph $H$ of $G$, if $H$ has no clique of size $q+1$, then the chromatic number of $H$ is less than or equal to $f(q)$. We denote by $W_n$ the wheel graph on $n+1$ vertices. We show that the class of graphs having no vertex-minor isomorphic to $W_n$ is $chi$-bounded. This generalizes several previous results; $chi$-boundedness for circle graphs, for graphs having no $W_5$ vertex-minors, and for graphs having no fan vertex-minors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا