ﻻ يوجد ملخص باللغة العربية
We study the probabilistic behaviour of the continued fraction expansion of a quadratic irrational number, when weighted by some additive cost. We prove asymptotic Gaussian limit laws, with an optimal speed of convergence. We deal with the underlying dynamical system associated with the Gauss map, and its weighted periodic trajectories. We work with analytic combinatorics methods, and mainly with bivariate Dirichlet generating functions; we use various tools, from number theory (the Landau Theorem), from probability (the Quasi-Powers Theorem), or from dynamical systems: our main object of study is the (weighted) transfer operator, that we relate with the generating functions of interest. The present paper exhibits a strong parallelism with the methods which have been previously introduced by Baladi and Vallee in the study of rational trajectories. However, the present study is more involved and uses a deeper functional analysis framework.
The arboreal Galois group of a polynomial $f$ over a field $K$ encodes the action of Galois on the iterated preimages of a root point $x_0in K$, analogous to the action of Galois on the $ell$-power torsion of an abelian variety. We compute the arbore
Let $f in Q(z)$ be a polynomial or rational function of degree 2. A special case of Morton and Silvermans Dynamical Uniform Boundedness Conjecture states that the number of rational preperiodic points of $f$ is bounded above by an absolute constant.
We compute the statistics of $SL_{d}(mathbb{Z})$ matrices lying on level sets of an integral polynomial defined on $SL_{d}(mathbb{R})$, a result that is a variant of the well known theorem proved by Linnik about the equidistribution of radially proje
For a quadratic endomorphism of the affine line defined over the rationals, we consider the problem of bounding the number of rational points that eventually land at the origin after iteration. In the article ``Uniform Bounds on Pre-Images Under Quad
Here we constructively classify quadratic $d$-numbers: algebraic integers in quadratic number fields generating Galois-invariant ideals. We prove the subset thereof maximal among their Galois conjugates in absolute value is discrete in $mathbb{R}$. O