ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of the selection function on metallicity trends in spectroscopic surveys of the Milky Way

54   0   0.0 ( 0 )
 نشر من قبل Govind Nandakumar
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate here the effect of the selection function on the metallicity distribution function (MDF) and on the vertical metallicity gradient by studying similar lines of sight using four different spectroscopic surveys (APOGEE, LAMOST, RAVE, and Gaia-ESO), which have different targeting strategies and therefore different selection functions. We use common fields between the spectroscopic surveys of APOGEE, LAMOST, RAVE (ALR) and APOGEE, RAVE, Gaia-ESO (AGR) and use two stellar population synthesis models, GALAXIA and TRILEGAL, to create mock fields for each survey. We apply the selection function in the form of colour and magnitude cuts of the respective survey to the mock fields to replicate the observed source sample. We make a basic comparison between the models to check which best reproduces the observed sample distribution. We carry out a quantitative comparison between the synthetic MDF from the mock catalogues using both models to understand the effect of the selection function on the MDF and on the vertical metallicity gradient. Using both models, we find a negligible effect of the selection function on the MDF for APOGEE, LAMOST, and RAVE. We find a negligible selection function effect on the vertical metallicity gradients as well, though GALAXIA and TRILEGAL have steeper and shallower slopes, respectively, than the observed gradient. After applying correction terms on the metallicities of RAVE and LAMOST with respect to our reference APOGEE sample, our observed vertical metallicity gradients between the four surveys are consistent within 1-sigma. We also find consistent gradient for the combined sample of all surveys in ALR and AGR. We estimated a mean vertical metallicity gradient of -0.241+/-0.028 dex kpc-1. There is a significant scatter in the estimated gradients in the literature, but our estimates are within their ranges.



قيم البحث

اقرأ أيضاً

(Abridged) We analyzed the stellar parameters and radial velocities of ~1200 stars in five bulge fields as determined from the Gaia-ESO survey data (iDR1). We use VISTA Variables in The Via Lactea (VVV) photometry to obtain reddening values by using a semi-empirical T_eff-color calibration. From a Gaussian decomposition of the metallicity distribution functions, we unveil a clear bimodality in all fields, with the relative size of components depending of the specific position on the sky. In agreement with some previous studies, we find a mild gradient along the minor axis (-0.05 dex/deg between b=-6 and b=-10) that arises from the varying proportion of metal-rich and metal-poor components. The number of metal-rich stars fades in favor of the metal-poor stars with increasing b. The K-magnitude distribution of the metal-rich population splits into two peaks for two of the analyzed fields that intersects the near and far branches of the X-shaped bulge structure. In addition, two lateral fields at (l,b)=(7,-9) and (l,b)=(-10,-8) present contrasting characteristics. In the former, the metallicity distribution is dominated by metal-rich stars, while in the latter it presents a mix of a metal-poor population and and a metal-intermediate one, of nearly equal sizes. Finally, we find systematic differences in the velocity dispersion between the metal-rich and the metal-poor components of each field. Our chemo-kinematical analysis is consistent with a varying field-to-field proportion of stars belonging to (i) a metal-rich boxy/peanut X-shaped component, with bar-like kinematics, and (ii) a metal-poor more extended rotating structure with a higher velocity dispersion that dominates far from the Galactic plane. These first GES data allow studying the detailed spatial dependence of the Galactic bulge populations, thanks to the analysis of individual fields with relatively high statistics.
The bandwith, sensitivity and sheer survey speed of the SKA offers unique potential for deep spectroscopic surveys of the Milky Way. Within the frequency bands available to the SKA lie many transitions that trace the ionised, radical and molecular co mponents of the interstellar medium and which will revolutionise our understanding of many physical processes. In this chapter we describe the impact on our understanding of the Milky Way that can be achieved by spectroscopic SKA surveys, including out of the box early science with radio recombination lines, Phase 1 surveys of the molecular ISM using anomalous formaldehyde absorption, and full SKA surveys of ammonia inversion lines.
148 - M. Ness , K. Freeman 2015
The Galactic bulge of the Milky Way is made up of stars with a broad range of metallicity, -3.0 < [Fe/H] < 1 dex. The mean of the Metallicity Distribution Function (MDF) decreases as a function of height z from the plane and, more weakly, with galact ic radius. The most metal rich stars in the inner Galaxy are concentrated to the plane and the more metal poor stars are found predominantly further from the plane, with an overall vertical gradient in the mean of the MDF of about -0.45 dex/kpc. This vertical gradient is believed to reflect the changing contribution with height of different populations in the inner-most region of the Galaxy. The more metal rich stars of the bulge are part of the boxy/peanut structure and comprise stars in orbits which trace out the underlying X-shape. There is still a lack of consensus on the origin of the metal poor stars ([Fe/H] < -0.5) in the region of the bulge. Some studies attribute the more metal poor stars of the bulge to the thick disk and stellar halo that are present in the inner region, and other studies propose that the metal poor stars are a distinct old spheroid bulge population. Understanding the origin of the populations that make up the MDF of the bulge, and identifying if there is a unique bulge population which has formed separately from the disk and halo, has important consequences for identifying the relevant processes in the the formation and evolution of the Milky Way.
GALAH and APOGEE are two high resolution multi object spectroscopic surveys that provide fundamental stellar parameters and multiple elemental abundance estimates for $>$ 400,000 stars in the Milky Way. They are complimentary in both sky coverage and wavelength regime. Thus combining the two surveys will provide us a large sample to investigate the disc metallicity and alpha abundance trends. We use the Cannon data-driven approach selecting training sets from among $sim$20,000 stars in common for the two surveys to predict the GALAH scaled stellar parameters from APOGEE spectra as well as APOGEE scaled stellar parameters from GALAH spectra. We provide two combined catalogues with GALAH scaled and APOGEE scaled stellar parameters each having $sim$500,000 stars after quality cuts. With $sim$470,000 stars that are common in both these catalogues, we compare the GALAH scaled and APOGEE scaled metallicity distribution functions (MDF), radial and vertical metallicity gradients as well as the variation of [$alpha$/Fe] vs [Fe/H] trends along and away from the Galactic mid plane. We find mean metallicities of APOGEE scaled sample to be higher compared to that for the GALAH scaled sample. We find similar [$alpha$/Fe] vs [Fe/H] trends using both samples consistent with previous observational as well as simulation based studies. Radial and vertical metallicity gradients derived using the two survey scaled samples are consistent except in the inner and outer Galactocentric radius bins. Our gradient estimates in the solar neighborhood are also consistent with previous studies and are backed by larger sample size compared to previous works.
141 - Timothy C. Beers 2005
We report on the distribution of metallicities, [Fe/H], for very metal-poor stars in the halo of the Galaxy. Although the primary information on the nature of the Metallicity Distribution Function (MDF) is obtained from the two major recent surveys f or metal-poor stars, the HK survey of Beers and collaborators, and the Hamburg/ESO Survey of Christlieb and collaborators, we also discuss the MDF derived from the publicly available database of stellar spectra and photometry contained in the third data release of the Sloan Digital Sky Survey (SDSS DR-3). Even though the SDSS was not originally planned as a stellar survey, significant numbers of stars have been observed to date -- DR-3 contains spectroscopy for over 70,000 stars, at least half of which are suitable for abundance determinations. There are as many very metal-poor ([Fe/H] < -2.0) stars in DR-3 as have been obtained from all previous survey efforts combined. We also discuss prospects for significant expansion of the list of metal-poor stars to be obtained from the recently funded extension of the SDSS, which includes the project SEGUE: Sloan Extension for Galactic Understanding and Exploration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا