ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing the UV-to-NIR shape of the dust attenuation curve of IR luminous galaxies up to z$sim$2

80   0   0.0 ( 0 )
 نشر من قبل Yannick Roehlly
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we investigate the far-UV to NIR shape of the dust attenuation curve of a sample of IR selected dust obscured (U)LIRGs at z$sim$2. The spectral energy distributions (SEDs) are fitted with CIGALE, a physically-motivated spectral synthesis model based on energy balance. Its flexibility allows us to test a wide range of different analytical prescriptions for the dust attenuation curve, including the well-known Calzetti and Charlot & Fall curves, and modifi



قيم البحث

اقرأ أيضاً

220 - V. Buat , N. Oi , S. Heinis 2015
(Abridged) We aim to study the evolution of dust attenuation in galaxies selected in the IR in the redshift range in which they are known to dominate the star formation activity in the universe. The comparison with other measurements of dust attenuat ion in samples selected using different criteria will give us a global picture of the attenuation at work in star-forming galaxies and its evolution with redshift. Using multiple filters of IRC instrument, we selected more than 4000 galaxies from their rest-frame emission at 8 microns, from z~0.2 to 2$. We built SEDs from the rest-frame UV to the far-IR by adding data in the optical-NIR and from GALEX and Herschel surveys. We fit SEDs with the physically-motivated code CIGALE. We test different templates for AGNs and recipes for dust attenuation and estimate stellar masses, SFRs, amount of dust attenuation, and AGN contribution to the total IR luminosity. The AGN contribution to the total IR luminosity is found to be on average approximately 10% with a slight increase with redshift. Dust attenuation in galaxies dominating the IR luminosity function is found to increase from z=0 to z=1 and to remain almost constant from z=1 to z=1.5. Conversely, when galaxies are selected at a fixed IR luminosity, their dust attenuation slightly decreases as redshift increases but with a large dispersion. The attenuation in our mid-IR selected sample is found ~ 2 mag higher than that found globally in the universe or in UV and Halpha line selections in the same redshift range. This difference is well explained by an increase of dust attenuation with the stellar mass, in global agreement with other recent studies. Starbursting galaxies do not systematically exhibit a high attenuation
We derive the mean wavelength dependence of stellar attenuation in a sample of 239 high redshift (1.90 < z < 2.35) galaxies selected via Hubble Space Telescope (HST) WFC3 IR grism observations of their rest-frame optical emission lines. Our analysis indicates that the average reddening law follows a form similar to that derived by Calzetti et al. for local starburst galaxies. However, over the mass range 7.2 < log M/Msolar < 10.2, the slope of the attenuation law in the UV is shallower than that seen locally, and the UV slope steepens as the mass increases. These trends are in qualitative agreement with Kriek & Conroy, who found that the wavelength dependence of attenuation varies with galaxy spectral type. However, we find no evidence of an extinction bump at 2175 A in any of the three stellar mass bins, or in the sample as a whole. We quantify the relation between the attenuation curve and stellar mass and discuss its implications.
We build a set of composite galaxy SEDs by de-redshifting and scaling multi-wavelength photometry from galaxies in the ZFOURGE survey, covering the CDFS, COSMOS, and UDS fields. From a sample of ~4000 K_s-band selected galaxies, we define 38 composit e galaxy SEDs that yield continuous low-resolution spectra (R~45) over the rest-frame range 0.1-4 um. Additionally, we include far infrared photometry from the Spitzer Space Telescope and the Herschel Space Observatory to characterize the infrared properties of our diverse set of composite SEDs. From these composite SEDs we analyze the rest-frame UVJ colors, as well as the ratio of IR to UV light (IRX) and the UV slope ($beta$) in the IRX$-beta$ dust relation at 1<z<3. Blue star-forming composite SEDs show IRX and $beta$ values consistent with local relations; dusty star-forming galaxies have considerable scatter, as found for local IR bright sources, but on average appear bluer than expected for their IR fluxes. We measure a tight linear relation between rest-frame UVJ colors and dust attenuation for star-forming composites, providing a direct method for estimating dust content from either (U-V) or (V-J) rest-frame colors for star-forming galaxies at intermediate redshifts.
We study the ultraviolet to far-infrared (hereafter UV-to-IR) SEDs of a sample of intermediate redshift (0.2 < z < 0.7) UV-selected galaxies from the ELAIS-N1 and ELAIS-N2 fields by fitting a multi-wavelength dataset to a library of GRASIL templates. Star formation related properties of the galaxies are derived from the library of models by using the Bayesian statistics. We find a decreasing presence of galaxies with low attenuation and low total luminosity as redshift decreases, which does not hold for high total luminosity galaxies. In addition the dust attenuation of low mass galaxies increases as redshift decreases, and this trend seems to disappear for galaxies with M* > 10^11 M_sun. This result is consistent with a mass dependent evolution of the dust to gas ratio, which could be driven by a mass dependent efficiency of star formation in star forming galaxies. The specific star formation rates (SSFR) decrease with increasing stellar mass at all redshifts, and for a given stellar mass the SSFR decreases with decreasing redshift. The differences in the slope of the M*--SSFR relation found between this work and others at similar redshift could be explained by the adopted selection criteria of the samples which, for a UV selected sample, favours blue, star forming galaxies.
We study the morphological and structural properties of the host galaxies associated with 57 optically-selected luminous type 2 AGN at $zsim$0.3-0.4: 16 high-luminosity Seyfert 2 (HLSy2, 8.0$le$log($L_{rm [OIII]}/L_{odot})<$8.3) and 41 obscured quasa rs (QSO2, log($L_{rm [OIII]}/L_{odot})ge$8.3). With this work, the total number of QSO2 at $z<1$ with parametrized galaxies increases from $sim$35 to 76. Our analysis is based on HST WFPC2 and ACS images that we fit with {sc GALFIT}. HLSy2 and QSO2 show a wide diversity of galaxy hosts. The main difference lies in the higher incidence of highly-disturbed systems among QSO2. This is consistent with a scenario in which galaxy interactions are the dominant mechanism triggering nuclear activity at the highest AGN power. There is a strong dependence of galaxy properties with AGN power (assuming $L_ {rm [OIII]}$ is an adequate proxy). The relative contribution of the spheroidal component to the total galaxy light (B/T) increases with $L_ {rm [OIII]}$. While systems dominated by the spheoridal component spread across the total range of $L_ {rm [OIII]}$, most disk-dominated galaxies concentrate at log($L_{rm [OIII]}/L_{odot})<$8.6. This is expected if more powerful AGN are powered by more massive black holes which are hosted by more massive bulges or spheroids. The average galaxy sizes ($langle r_{rm e} rangle$) are 5.0$pm$1.5 kpc for HLSy2 and 3.9$pm$0.6 kpc for HLSy2 and QSO2 respectively. These are significantly smaller than those found for QSO1 and narrow line radio galaxies at similar $z$. We put the results of our work in context of related studies of AGN with quasar-like luminosities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا