ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological AdS/CFT

209   0   0.0 ( 0 )
 نشر من قبل Paul Richmond
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We define a holographic dual to the Donaldson-Witten topological twist of $mathcal{N}=2$ gauge theories on a Riemannian four-manifold. This is described by a class of asymptotically locally hyperbolic solutions to $mathcal{N}=4$ gauged supergravity in five dimensions, with the four-manifold as conformal boundary. Under AdS/CFT, minus the logarithm of the partition function of the gauge theory is identified with the holographically renormalized supergravity action. We show that the latter is independent of the metric on the boundary four-manifold, as required for a topological theory. Supersymmetric solutions in the bulk satisfy first order differential equations for a twisted $Sp(1)$ structure, which extends the quaternionic Kahler structure that exists on any Riemannian four-manifold boundary. We comment on applications and extensions, including generalizations to other topological twists.



قيم البحث

اقرأ أيضاً

In this note, we define a holographic dual to four-dimensional superconformal field theories formulated on arbitrary Riemannian manifolds equipped with a Killing vector. Moreover, assuming smoothness of the bulk solution, we study the variation of th e holographically renormalized supergravity action in the class of metrics on the boundary four-manifold with a prescribed isometry.
We define and study a holographic dual to the topological twist of $mathcal{N}=4$ gauge theories on Riemannian three-manifolds. The gravity duals are solutions to four-dimensional $mathcal{N}=4$ gauged supergravity, where the three-manifold arises as a conformal boundary. Following our previous work, we show that the renormalized gravitational free energy of such solutions is independent of the boundary three-metric, as required for a topological theory. We then go further, analyzing the geometry of supersymmetric bulk solutions. Remarkably, we are able to show that the gravitational free energy of any smooth four-manifold filling of any three-manifold is always zero. Aided by this analysis, we prove a similar result for topological AdS$_5$/CFT$_4$. We comment on the implications of these results for the large $N$ limits of topologically twisted gauge theories in three and four dimensions, including the ABJM theory and $mathcal{N}=4$ $SU(N)$ super-Yang-Mills, respectively.
We revisit the construction in four-dimensional gauged $Spin(4)$ supergravity of the holographic duals to topologically twisted three-dimensional $mathcal{N}=4$ field theories. Our focus in this paper is to highlight some subtleties related to preser ving supersymmetry in AdS/CFT, namely the inclusion of finite counterterms and the necessity of a Legendre transformation to find the dual to the field theory generating functional. Studying the geometry of these supergravity solutions, we conclude that the gravitational free energy is indeed independent from the metric of the boundary, and it vanishes for any smooth solution.
We study the AdS/CFT thermodynamics of the spatially isotropic counterpart of the Bjorken similarity flow in d-dimensional Minkowski space with d>=3, and of its generalisation to linearly expanding d-dimensional Friedmann-Robertson-Walker cosmologies with arbitrary values of the spatial curvature parameter k. The bulk solution is a nonstatic foliation of the generalised Schwarzschild-AdS black hole with a horizon of constant curvature k. The boundary matter is an expanding perfect fluid that satisfies the first law of thermodynamics for all values of the temperature and the spatial curvature, but it admits a description as a scale-invariant fluid in local thermal equilibrium only when the inverse Hawking temperature is negligible compared with the spatial curvature length scale. A Casimir-type term in the holographic energy-momentum tensor is identified from the threshold of black hole formation and is shown to take different forms for k>=0 and k<0.
We construct a $p$-adic analog to AdS/CFT, where an unramified extension of the $p$-adic numbers replaces Euclidean space as the boundary and a version of the Bruhat-Tits tree replaces the bulk. Correlation functions are computed in the simple case o f a single massive scalar in the bulk, with results that are strikingly similar to ordinary holographic correlation functions when expressed in terms of local zeta functions. We give some brief discussion of the geometry of $p$-adic chordal distance and of Wilson loops. Our presentation includes an introduction to $p$-adic numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا