ﻻ يوجد ملخص باللغة العربية
Due to its storage and retrieval efficiency, cross-modal hashing~(CMH) has been widely used for cross-modal similarity search in multimedia applications. According to the training strategy, existing CMH methods can be mainly divided into two categories: relaxation-based continuous methods and discrete methods. In general, the training of relaxation-based continuous methods is faster than discrete methods, but the accuracy of relaxation-based continuous methods is not satisfactory. On the contrary, the accuracy of discrete methods is typically better than relaxation-based continuous methods, but the training of discrete methods is time-consuming. In this paper, we propose a novel CMH method, called discrete latent factor model based cross-modal hashing~(DLFH), for cross modal similarity search. DLFH is a discrete method which can directly learn the binary hash codes for CMH. At the same time, the training of DLFH is efficient. Experiments on real datasets show that DLFH can achieve significantly better accuracy than existing methods, and the training time of DLFH is comparable to that of relaxation-based continuous methods which are much faster than existing discrete methods.
Due to its low storage cost and fast query speed, cross-modal hashing (CMH) has been widely used for similarity search in multimedia retrieval applications. However, almost all existing CMH methods are based on hand-crafted features which might not b
Supervised cross-modal hashing aims to embed the semantic correlations of heterogeneous modality data into the binary hash codes with discriminative semantic labels. Because of its advantages on retrieval and storage efficiency, it is widely used for
Supervised cross-modal hashing has gained increasing research interest on large-scale retrieval task owning to its satisfactory performance and efficiency. However, it still has some challenging issues to be further studied: 1) most of them fail to w
Hashing has been widely used for large-scale search due to its low storage cost and fast query speed. By using supervised information, supervised hashing can significantly outperform unsupervised hashing. Recently, discrete supervised hashing and dee
Hashing has been widely adopted for large-scale data retrieval in many domains, due to its low storage cost and high retrieval speed. Existing cross-modal hashing methods optimistically assume that the correspondence between training samples across m