ترغب بنشر مسار تعليمي؟ اضغط هنا

Cohomology characterizations of non-abelian extensions of Hom-Lie algebras

89   0   0.0 ( 0 )
 نشر من قبل Rong Tang
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, first we show that under the assumption of the center of h being zero, diagonal non-abelian extensions of a regular Hom-Lie algebra g by a regular Hom-Lie algebra h are in one-to-one correspondence with Hom-Lie algebra morphisms from g to Out(h). Then for a general Hom-Lie algebra morphism from g to Out(h), we construct a cohomology class as the obstruction of existence of a non-abelian extension that induce the given Hom-Lie algebra morphism.



قيم البحث

اقرأ أيضاً

83 - Lina Song , Rong Tang 2016
In this paper, we introduce the notion of a derivation of a Hom-Lie algebra and construct the corresponding strict Hom-Lie 2-algebra, which is called the derivation Hom-Lie 2-algebra. As applications, we study non-abelian extensions of Hom-Lie algebr as. We show that iso- morphism classes of diagonal non-abelian extensions of a Hom-Lie algebra g by a Hom-Lie algebra h are in one-to-one correspondence with homotopy classes of morphisms from g to the derivation Hom-Lie 2-algebra DER(h).
171 - Lina Song , Rong Tang 2017
In this paper, first we give the cohomologies of an $n$-Hom-Lie algebra and introduce the notion of a derivation of an $n$-Hom-Lie algebra. We show that a derivation of an $n$-Hom-Lie algebra is a $1$-cocycle with the coefficient in the adjoint repre sentation. We also give the formula of the dual representation of a representation of an $n$-Hom-Lie algebra. Then, we study $(n-1)$-order deformation of an $n$-Hom-Lie algebra. We introduce the notion of a Hom-Nijenhuis operator, which could generate a trivial $(n-1)$-order deformation of an $n$-Hom-Lie algebra. Finally, we introduce the notion of a generalized derivation of an $n$-Hom-Lie algebra, by which we can construct a new $n$-Hom-Lie algebra, which is called the generalized derivation extension of an $n$-Hom-Lie algebra.
108 - J. M. Casas , E. Khmaladze , 2019
We study some properties of the non-abelian tensor product of Hom-Lie algebras concerning the preservation of products and quotients, solvability and nilpotency, and describe compatibility with the universal central extensions of perfect Hom-Lie algebras.
After endowing with a 3-Lie-Rinehart structure on Hom 3-Lie algebras, we obtain a class of special Hom 3-Lie algebras, which have close relationships with representations of commutative associative algebras. We provide a special class of Hom 3-Lie- Rinehart algebras, called split regular Hom 3-Lie-Rinehart algebras, and we then characterize their structures by means of root systems and weight systems associated to a splitting Cartan subalgebra.
154 - Lamei Yuan , Jiaxin Li 2021
In this paper, we introduce the notions of biderivations and linear commuting maps of Hom-Lie algebras and superalgebras. Then we compute biderivations of the q-deformed W(2,2) algebra, q-deformed Witt algebra and superalgebras by elementary and dire ct calculations. As an application, linear commuting maps on these algebras are characterized. Also, we introduce the notions of {alpha}-derivations and {alpha}-biderivations for Hom-Lie algebras and superal- gebras, and we establish a close relation between {alpha}-derivations and {alpha}-biderivations. As an illustration, we prove that the q-deformed W(2;2)-algebra, the q-deformed Witt algebra and superalgebra have no nontrivial {alpha}-biderivations. Finally, we present an example of Hom-Lie superalgebras with nontrivial {alpha}-super-derivations and biderivations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا