ﻻ يوجد ملخص باللغة العربية
We investigate the acceleration of electrons and positrons by magnetic-field-aligned electric fields in the polar funnel of an accreting black hole (BH). Applying the pulsar outer-gap theory to BH magnetospheres, we find that such a lepton accelerator arises in the immediate vicinity of the event horizon due to frame-dragging, and that their gamma-ray luminosity increases with decreasing accretion rate. Furthermore, we demonstrate that the gamma-ray flux is enhanced along the rotation axis by more than an order of magnitude if the BH spin increases from $a=0.90M$ to $a=0.9999M$. As a result, if a ten-solar-mass, almost-maximally rotating BH is located within 3 kpc, when its accretion rate is between 0.005% and 0.01% of the Eddington rate, its high-energy flare becomes detectable with the Fermi/Large Area Telescope, provided that the flare lasts longer than 1.2 months and that we view the source nearly along the rotation axis. In addition, its very-high-energy flux is marginally detectable with the Cherenkov Telescope Array, provided that the flare lasts longer than a night and that our viewing angle is about 45 degrees with respect to the rotation axis.
Supermassive black holes are believed to be the central power house of active galactic nuclei. Applying the pulsar outer-magnetospheric particle accelerator theory to black-hole magnetospheres, we demonstrate that an electric field is exerted along t
When a black hole accretes plasmas at very low accretion rate, an advection-dominated accretion flow (ADAF) is formed. In an ADAF, relativistic electrons emit soft gamma-rays via Bremsstrahlung. Some MeV photons collide with each other to materialize
Rotating supermassive black holes produce jets and their origin is connected to magnetic field that is generated by accreting matter flow. There is a point of view that electromagnetic fields around rotating black holes are brought to the hole by acc
The Unruhs thermal state in the vicinity of the event horizon of the black hole provides conditions where impinging particles can radiate other particles. The subsequent decays may eventually lead to observable radiation of photons and neutrinos indu
The on-going H.E.S.S. Galactic Plane Survey continues to reveal new sources of VHE gamma-rays. In particular, recent re-observations of the region around the shell-type supernova remnant (SNR) G318.2+0.1 have resulted in the discovery of statisticall