ترغب بنشر مسار تعليمي؟ اضغط هنا

Flux-ratio anomalies from discs and other baryonic structures in the Illustris simulation

54   0   0.0 ( 0 )
 نشر من قبل Jen-Wei Hsueh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jen-Wei Hsueh




اسأل ChatGPT حول البحث

The flux ratios in the multiple images of gravitationally lensed quasars can provide evidence for dark matter substructure in the halo of the lensing galaxy if the flux ratios differ from those predicted by a smooth model of the lensing galaxy mass distribution. However, it is also possible that baryonic structures in the lensing galaxy, such as edge-on discs, can produce flux-ratio anomalies. In this work, we present the first statistical analysis of flux-ratio anomalies due to baryons from a numerical simulation perspective. We select galaxies with various morphological types in the Illustris simulation and ray-trace through the simulated halos, which include baryons in the main lensing galaxies but exclude any substructures, in order to explore the pure baryonic effects. Our ray-tracing results show that the baryonic components can be a major contribution to the flux-ratio anomalies in lensed quasars and that edge-on disc lenses induce the strongest anomalies. We find that the baryonic components increase the probability of finding high flux-ratio anomalies in the early-type lenses by about 8% and by about 10 - 20% in the disc lenses. The baryonic effects also induce astrometric anomalies in 13% of the mock lenses. Our results indicate that the morphology of the lens galaxy becomes important in the analysis of flux-ratio anomalies when considering the effect of baryons, and that the presence of baryons may also partially explain the discrepancy between the observed (high) anomaly frequency and what is expected due to the presence of subhalos as predicted by the CDM simulations.



قيم البحث

اقرأ أيضاً

(Abridged) Any viable cosmological model in which galaxies interact predicts the existence of primordial and tidal dwarf galaxies (TDGs). In particular, in the standard model of cosmology ($Lambda$CDM), according to the dual dwarf galaxy theorem, the re must exist both primordial dark matter-dominated and dark matter-free TDGs with different radii. We study the frequency, evolution, and properties of TDGs in a $Lambda$CDM cosmology. We use the hydrodynamical cosmological Illustris-1 simulation to identify tidal dwarf galaxy candidates (TDGCs) and study their present-day physical properties. We also present movies on the formation of a few galaxies lacking dark matter, confirming their tidal dwarf nature. TDGCs can however also be formed via other mechanisms, such as from ram-pressure-stripped material or, speculatively, from cold-accreted gas. We find 97 TDGCs with $M_{stellar} >5 times 10^7 M_odot$ at redshift $z = 0$, corresponding to a co-moving number density of $2.3 times 10^{-4} h^3 cMpc^{-3}$. The most massive TDGC has $M_{total} = 3.1 times 10^9 M_odot$, comparable to that of the Large Magellanic Cloud. TDGCs are phase-space-correlated, reach high metallicities, and are typically younger than dark matter-rich dwarf galaxies. We report for the first time the verification of the dual dwarf theorem in a self-consistent $Lambda$CDM cosmological simulation. Simulated TDGCs and dark matter-dominated galaxies populate different regions in the radius-mass diagram in disagreement with observations of early-type galaxies. The dark matter-poor galaxies formed in Illustris-1 have comparable radii to observed dwarf galaxies and to TDGs formed in other galaxy-encounter simulations. In Illustris-1, only 0.17% of all selected galaxies with $M_{stellar} = 5 times 10^7-10^9 M_odot$ are TDGCs or dark matter-poor dwarf galaxies. The occurrence of NGC 1052-DF2-type objects is discussed.
We present our methods for generating a catalog of 7,000 synthetic images and 40,000 integrated spectra of redshift z = 0 galaxies from the Illustris Simulation. The mock data products are produced by using stellar population synthesis models to assi gn spectral energy distributions (SED) to each star particle in the galaxies. The resulting synthetic images and integrated SEDs therefore properly reflect the spatial distribution, stellar metallicity distribution, and star formation history of the galaxies. From the synthetic data products it is possible to produce monochromatic or color-composite images, perform SED fitting, classify morphology, determine galaxy structural properties, and evaluate the impacts of galaxy viewing angle. The main contribution of this paper is to describe the production, format, and composition of the image catalog that makes up the Illustris Simulation Obsevatory. As a demonstration of this resource, we derive galactic stellar mass estimates by applying the SED fitting code FAST to the synthetic galaxy products, and compare the derived stellar masses against the true stellar masses from the simulation. We find from this idealized experiment that systematic biases exist in the photometrically derived stellar mass values that can be reduced by using a fixed metallicity in conjunction with a minimum galaxy age restriction.
We study the properties of black holes and their host galaxies across cosmic time in the Illustris simulation. Illustris is a large scale cosmological hydrodynamical simulation which resolves a (106.5 Mpc)^3 volume with more than 12 billion resolutio n elements and includes state-of-the-art physical models relevant for galaxy formation. We find that the black hole mass density for redshifts z = 0 - 5 and the black hole mass function at z = 0 predicted by Illustris are in very good agreement with the most recent observational constraints. We show that the bolometric and hard X-ray luminosity functions of AGN at z = 0 and 1 reproduce observational data very well over the full dynamic range probed. Unless the bolometric corrections are largely underestimated, this requires radiative efficiencies to be on average low, epsilon_r <= 0.1, noting however that in our model radiative efficiencies are degenerate with black hole feedback efficiencies. Cosmic downsizing of the AGN population is in broad agreement with the findings from X-ray surveys, but we predict a larger number density of faint AGN at high redshifts than currently inferred. We also study black hole -- host galaxy scaling relations as a function of galaxy morphology, colour and specific star formation rate. We find that black holes and galaxies co-evolve at the massive end, but for low mass, blue and star-forming galaxies there is no tight relation with either their central black hole masses or the nuclear AGN activity.
We have constructed merger trees for galaxies in the Illustris Simulation by directly tracking the baryonic content of subhalos. These merger trees are used to calculate the galaxy-galaxy merger rate as a function of descendant stellar mass, progenit or stellar mass ratio, and redshift. We demonstrate that the most appropriate definition for the mass ratio of a galaxy-galaxy merger consists in taking both progenitor masses at the time when the secondary progenitor reaches its maximum stellar mass. Additionally, we avoid effects from `orphaned galaxies by allowing some objects to `skip a snapshot when finding a descendant, and by only considering mergers which show a well-defined `infall moment. Adopting these definitions, we obtain well-converged predictions for the galaxy-galaxy merger rate with the following main features, which are qualitatively similar to the halo-halo merger rate except for the last one: a strong correlation with redshift that evolves as $sim (1+z)^{2.4-2.8}$, a power law with respect to mass ratio, and an increasing dependence on descendant stellar mass, which steepens significantly for descendant stellar masses greater than $sim 2 times 10^{11} , {rm M_{odot}}$. These trends are consistent with observational constraints for medium-sized galaxies ($M_{ast} gtrsim 10^{10} , {rm M_{odot}}$), but in tension with some recent observations of the close pair fraction for massive galaxies ($M_{ast} gtrsim 10^{11} , {rm M_{odot}}$), which report a nearly constant or decreasing evolution with redshift. Finally, we provide a fitting function for the galaxy-galaxy merger rate which is accurate over a wide range of stellar masses, progenitor mass ratios, and redshifts.
We present the first study of evolution of galaxy groups in the Illustris simulation. We focus on dynamically relaxed and unrelaxed galaxy groups representing dynamically evolved and evolving galaxy systems, respectively. The evolutionary state of a group is probed from its luminosity gap and separation between the brightest group galaxy and the center of mass of the group members. We find that the Illustris simulation, over-produces large luminosity gap galaxy systems, known as fossil systems, in comparison to observations and the probed semi-analytical predictions. However, this simulation is equally successful in recovering the correlation between luminosity gap and luminosity centroid offset, in comparison to the probed semi-analytic model. We find evolutionary tracks based on luminosity gap which indicate that a large luminosity gap group is rooted in a small luminosity gap group, regardless of the position of the brightest group galaxy within the halo. This simulation helps, for the first time, to explore the black hole mass and its accretion rate in galaxy groups. For a given stellar mass of the brightest group galaxies, the black hole mass is larger in dynamically relaxed groups with a lower rate of mass accretion. We find this consistent with the latest observational studies of the radio activities in the brightest group galaxies in fossil groups. We also find that the IGM in dynamically evolved groups is hotter for a given halo mass than that in evolving groups, again consistent with earlier observational studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا