ﻻ يوجد ملخص باللغة العربية
We present molecular gas mass estimates for a sample of 13 local galaxies whose kinematic and star forming properties closely resemble those observed in $zapprox 1.5$ main-sequence galaxies. Plateau de Bure observations of the CO[1-0] emission line and Herschel Space Observatory observations of the dust emission both suggest molecular gas mass fractions of ~20%. Moreover, dust emission modeling finds $T_{dust}<$30K, suggesting a cold dust distribution compared to their high infrared luminosity. The gas mass estimates argue that $zsim$0.1 DYNAMO galaxies not only share similar kinematic properties with high-z disks, but they are also similarly rich in molecular material. Pairing the gas mass fractions with existing kinematics reveals a linear relationship between $f_{gas}$ and $sigma$/$v_{c}$, consistent with predictions from stability theory of a self-gravitating disk. It thus follows that high gas velocity dispersions are a natural consequence of large gas fractions. We also find that the systems with lowest depletion times ($sim$0.5 Gyr) have the highest ratios of $sigma$/$v_{c}$ and more pronounced clumps, even at the same high molecular gas fraction.
We study the spatially resolved stellar kinematics of two star-forming galaxies at z = 0.1 from the larger DYnamics of Newly Assembled Massive Objects (DYNAMO) sample. These galaxies, which have been characterized by high levels of star formation and
We present deep observations of a $z=1.4$ massive, star-forming galaxy in molecular and ionized gas at comparable spatial resolution (CO 3-2, NOEMA; H$alpha$, LBT). The kinematic tracers agree well, indicating that both gas phases are subject to the
We use dust masses ($M_{dust}$) derived from far-infrared data and molecular gas masses ($M_{mol}$) based on CO luminosity, to calibrate proxies based on a combination of the galaxy Balmer decrement, disk inclination and gas metallicity. We use such
One important result from recent large integral field spectrograph (IFS) surveys is that the intrinsic velocity dispersion of galaxies traced by star-forming gas increases with redshift. Massive, rotation-dominated discs are already in place at z~2,
We consider the relationship between the total HI mass in late-type galaxies and the kinematic properties of their disks. The mass $M_HI$ for galaxies with a wide variety of properties, from dwarf dIrr galaxies with active star formation to giant low