ﻻ يوجد ملخص باللغة العربية
We present insights and empirical results from an extensive numerical study of the evolutionary dynamics of the iterated prisoners dilemma. Fixation probabilities for Moran processes are obtained for all pairs of 164 different strategies including classics such as TitForTat, zero determinant strategies, and many more sophisticated strategies. Players with long memories and sophisticated behaviours outperform many strategies that perform well in a two player setting. Moreover we introduce several strategies trained with evolutionary algorithms to excel at the Moran process. These strategies are excellent invaders and resistors of invasion and in some cases naturally evolve handshaking mechanisms to resist invasion. The best invaders were those trained to maximize total payoff while the best resistors invoke handshake mechanisms. This suggests that while maximizing individual payoff can lead to the evolution of cooperation through invasion, the relatively weak invasion resistance of payoff maximizing strategies are not as evolutionarily stable as strategies employing handshake mechanisms.
The Axelrod library is an open source Python package that allows for reproducible game theoretic research into the Iterated Prisoners Dilemma. This area of research began in the 1980s but suffers from a lack of documentation and test code. The goal o
In the evolutionary Prisoners Dilemma (PD) game, agents play with each other and update their strategies in every generation according to some microscopic dynamical rule. In its spatial version, agents do not play with every other but, instead, inter
We present tournament results and several powerful strategies for the Iterated Prisoners Dilemma created using reinforcement learning techniques (evolutionary and particle swarm algorithms). These strategies are trained to perform well against a corp
Since the introduction of zero-determinant strategies, extortionate strategies have received considerable interest. While an interesting class of strategies, the definitions of extortionate strategies are algebraically rigid, apply only to memory-one
We study the problem of the emergence of cooperation in the spatial Prisoners Dilemma. The pioneering work by Nowak and May showed that large initial populations of cooperators can survive and sustain cooperation in a square lattice with imitate-the-