ﻻ يوجد ملخص باللغة العربية
Periodic driving fields can induce topological phase transitions, resulting in Floquet topological phases with intriguing properties such as very large Chern numbers and unusual edge states. Whether such Floquet topological phases could generate robust edge state conductance much larger than their static counterparts is an interesting question. In this paper, working under the Keldysh formalism, we study two-lead transport via the edge states of irradiated quantum Hall insulators using the method of recursive Floquet-Greens functions. Focusing on a harmonically-driven Hofstadter model, we show that quantized Hall conductance as large as $8e^2/h$ can be realized, but only after applying the so-called Floquet sum rule. To assess the robustness of edge state transport, we analyze the DC conductance, time-averaged current profile and local density of states. It is found that co-propagating chiral edge modes are more robust against disorder and defects as compared with the remarkable counter-propagating edge modes, as well as certain symmetry-restricted Floquet edge modes. Furthermore, we go beyond the wide-band limit, which is often assumed for the leads, to study how the conductance quantization (after applying the Floquet sum rule) of Floquet edge states can be affected if the leads have finite bandwidths. These results may be useful for the design of transport devices based on Floquet topological matter.
The anomalous Floquet Anderson insulator (AFAI) is a two dimensional periodically driven system in which static disorder stabilizes two topologically distinct phases in the thermodynamic limit. The presence of a unit-conducting chiral edge mode and t
Measurement and theory of the two-terminal conductance of monolayer and bilayer graphene in the quantum Hall regime are compared. We examine features of conductance as a function of gate voltage that allow monolayer, bilayer, and gapped samples to be
We propose a versatile framework to dynamically generate Floquet higher-order topological insulators by multi-step driving of topologically trivial Hamiltonians. Two analytically solvable examples are used to illustrate this procedure to yield Floque
We explore transport across an ultra-small Quantum Hall Island (QHI) formed by closed quan- tum Hall edge states and connected to propagating edge channels through tunnel barriers. Scanning gate microscopy and scanning gate spectroscopy are used to f
The quantum Hall effect is a remarkable manifestation of quantized transport in a two-dimensional electron gas. Given its technological relevance, it is important to understand its development in realistic nanoscale devices. In this work we present h