ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Assembling Oxide Catalyst for Electrochemical Water Splitting

116   0   0.0 ( 0 )
 نشر من قبل Daniel Bick
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Renewable energy conversion and storage, and greenhouse gas emission-free technologies are within the primary tasks and challenges for the society. Hydrogen fuel, produced by alkaline water electrolysis is fulfilling all these demands, however the technology is economically feeble, limited by the slow rate of oxygen evolution reaction. Complex metal oxides were suggested to overcome this problem being low-cost efficient catalysts. However, the insufficient long-term stability, degradation of structure and electrocatalytic activity are restricting their utilization. Here we report on a new perovskite-based self-assembling material BaCo0.98Ti0.02O3-$delta$:Co3O4 with superior performance, showing outstanding properties compared to current state-of-the-art materials without degeneration of its properties even at 353 K. By chemical and structural analysis the degradation mechanism was identified and modified by selective doping. Short-range order and chemical composition rather than long-range order are factors determining the outstanding performance. The derived general design rules can be used for further development of oxide-based electrocatalytic materials.



قيم البحث

اقرأ أيضاً

Manganese oxides have received much attention over the years among the wide range of electrocatalysts for the oxygen evolution reaction (OER) due to their low toxicity, high abundance and rich redox chemistry. While many previous studies focused on t he activity of these materials, a better understanding of the material transformations relating to activation or degradation is highly desirable, both from a scientific perspective and for applications. We electrodeposited Na-containing MnOx without long-range order from an alkaline solution to investigate these aspects by cyclic voltammetry, scanning electron microscopy and x-ray absorption spectroscopy at the Mn-K and Mn-L edges. The pristine film was assigned to a layered edge-sharing Mn3+/4+ oxide with Mn-O bond lengths of mainly 1.87 {AA} and some at 2.30 {AA} as well as Mn-Mn bond lengths of 2.87 {AA} based on fits to the extended x-ray fine structure. The decrease of the currents at voltages before the onset of the OER followed power laws with three different exponents depending on the number of cycles and the Tafel slope decreases from 186 pm 48 to 114 pm 18 mV dec-1 after 100 cycles, which we interpret in the context of surface coverage with unreacted intermediates. Post-mortem microscopy and bulk spectroscopy at the Mn-K edge showed no change of the microstructure, bulk local structure or bulk Mn valence. Yet, the surface region of MnOx oxidized toward Mn4+, which explains the reduction of the currents in agreement with literature. Surprisingly, we find that MnOx reactivates after 30 min at open-circuit (OC), where the currents and also the Tafel slope increase. Reactivation processes during OC are crucial because OC is unavoidable when coupling the electrocatalysts to intermittent power sources such as solar energy for sustainable energy production.
212 - Ji-Hyun Kim , Jianshu Cao 2010
Using a classical master equation that describes energy transfer over a given lattice, we explore how energy transfer efficiency along with the photon capturing ability depends on network connectivity, on transfer rates, and on volume fractions - the numbers and relative ratio of fluorescence chromophore components, e.g., donor (D), acceptor (A), and bridge (B) chromophores. For a one-dimensional AD array, the exact analytical expression for efficiency shows a steep increase with a D-to-A transfer rate when a spontaneous decay is sufficiently slow. This result implies that the introduction of B chromophores can be a useful method for improving efficiency for a two-component AD system with inefficient D-to-A transfer and slow spontaneous decay. Analysis of this one-dimensional system can be extended to higher-dimensional systems with chromophores arranged in structures such as a helical or stacked-disk rod, which models the self-assembling monomers of the tobacco mosaic virus coat protein. For the stacked-disk rod, we observe the following: (1) With spacings between sites fixed, a staggered conformation is more efficient than an eclipsed conformation. (2) For a given ratio of A and D chromophores, the uniform distribution of acceptors that minimizes the mean first passage time to acceptors is a key point to designing the optimal network for a donor-acceptor system with a relatively small D-to-A transfer rate. (3) For a three-component ABD system with a large B-to-A transfer rate, a key design strategy is to increase the number of the pathways in accordance with the directional energy flow from D to B to A chromophores.
269 - Moritz Kolbach 2021
Recently, significant progress in the development of III-V/Si dual-junction solar cells has been achieved. This not only boosts the efficiency of Si-based photovoltaic solar cells, but also offers the possibility of highly efficient green hydrogen pr oduction via solar water splitting. Using such dual-junction cells in a highly integrated photoelectrochemical approach and aiming for upscaled devices with solar-to-hydrogen efficiencies beyond 20%, however, the following frequently neglected contrary effects become relevant: (i) light absorption in the electrolyte layer in front of the top absorber and (ii) the impact of this layer on the ohmic and transport losses. Here, we initially model the influence of the electrolyte layer thickness on the maximum achievable solar-to-hydrogen efficiency of a device with an Si bottom cell and show how the top absorber bandgap has to be adapted to minimise efficiency losses. Then, the contrary effects of increasing ohmic and transport losses with decreasing electrolyte layer thickness are evaluated. This allows us to estimate an optimum electrolyte layer thickness range that counterbalances the effects of parasitic absorption and ohmic/transport losses. We show that fine-tuning of the top absorber bandgap and the water layer thickness can lead to an STH efficiency increase of up to 1% absolute. Our results allow us to propose important design rules for high-efficiency photoelectrochemical devices based on multi-junction photoabsorbers.
Although 2D materials hold great potential for next-generation pressure sensors, recent studies revealed that gases permeate along the membrane-surface interface that is only weakly bound by van der Waals interactions, necessitating additional sealin g procedures. In this work, we demonstrate the use of free-standing complex oxides as self-sealing membranes that allow the reference cavity of pressure sensors to be sealed by a simple anneal. To test the hermeticity, we study the gas permeation time constants in nano-mechanical resonators made from SrRuO3 and SrTiO3 membranes suspended over SiO2/Si cavities which show an improvement up to 4 orders of magnitude in the permeation time constant after annealing the devices for 15 minutes. Similar devices fabricated on Si3N4/Si do not show such improvements, suggesting that the adhesion increase over SiO2 is mediated by oxygen bonds that are formed at the SiO2/complex oxide interface during the self-sealing anneal. We confirm the enhancement of adhesion by picosecond ultrasonics measurements which show an increase in the interfacial stiffness by 70% after annealing. Since it is straigthforward to apply, the presented self-sealing method is thus a promising route toward realizing ultrathin hermetic pressure sensors.
Kohn-Sham density functional theory (DFT) has become established as an indispensable tool for investigating aqueous systems of all kinds, including those important in chemistry, surface science, biology and the earth sciences. Nevertheless, many wide ly used approximations for the exchange-correlation (XC) functional describe the properties of pure water systems with an accuracy that is not fully satisfactory. The explicit inclusion of dispersion interactions generally improves the description, but there remain large disagreements between the predictions of different dispersion-inclusive methods. We present here a review of DFT work on water clusters, ice structures and liquid water, with the aim of elucidating how the strengths and weaknesses of different XC approximations manifest themselves across this variety of water systems. Our review highlights the crucial role of dispersion in describing the delicate balance between compact and extended structures of many different water systems, including the liquid. By referring to a wide range of published work, we argue that the correct description of exchange-overlap interactions is also extremely important, so that the choice of semi-local or hybrid functional employed in dispersion-inclusive methods is crucial. The origins and consequences of beyond-2-body errors of approximate XC functionals are noted, and we also discuss the substantial differences between different representations of dispersion. We propose a simple numerical scoring system that rates the performance of different XC functionals in describing water systems, and we suggest possible future developments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا