ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-organisation of random oscillators with Levy stable distributions

70   0   0.0 ( 0 )
 نشر من قبل Johan Anderson
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel possibility of self-organized behaviour of stochastically driven oscillators is presented. It is shown that synchronization by Levy stable processes is significantly more efficient than that by oscillators with Gaussian statistics. The impact of outlier events from the tail of the distribution function was examined by artificially introducing a few additional oscillators with very strong coupling strengths and it is found that remarkably even one such rare and extreme event may govern the long term behaviour of the coupled system. In addition to the multiplicative noise component, we have investigated the impact of an external additive Levy distributed noise component on the synchronisation properties of the oscillators.



قيم البحث

اقرأ أيضاً

133 - K. Gorska , K. A. Penson 2012
We present a method of generation of exact and explicit forms of one-sided, heavy-tailed Levy stable probability distributions g_{alpha}(x), 0 leq x < infty, 0 < alpha < 1. We demonstrate that the knowledge of one such a distribution g_{alpha}(x) suf fices to obtain exactly g_{alpha^{p}}(x), p=2, 3,... Similarly, from known g_{alpha}(x) and g_{beta}(x), 0 < alpha, beta < 1, we obtain g_{alpha beta}(x). The method is based on the construction of the integral operator, called Levy transform, which implements the above operations. For alpha rational, alpha = l/k with l < k, we reproduce in this manner many of the recently obtained exact results for g_{l/k}(x). This approach can be also recast as an application of the Efros theorem for generalized Laplace convolutions. It relies solely on efficient definite integration.
A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced following the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the l ongitudinal and the other in torsional plain. Within each population a Kuramoto type competition between the phases is assumed. Thus, the synchronisation state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronisation of stochastic oscillator is discussed.
We study the effects of Janus oscillators in a system of phase oscillators in which the coupling constants take both positive and negative values. Janus oscillators may also form a cluster when the other ones are ordered and we calculate numerically the traveling speed of three clusters emerging in the system and average separations between them as well as the order parameters for three groups of oscillators, as the coupling constants and the fractions of positive and Janus oscillators are varied. An expression explaining the dependence of the traveling speed on these parameters is obtained and observed to fit well the numerical data. With the help of this, we describe how Janus oscillators affect the traveling of the clusters in the system.
We analyze accuracy of different low-dimensional reductions of the collective dynamics in large populations of coupled phase oscillators with intrinsic noise. Three approximations are considered: (i) the Ott-Antonsen ansatz, (ii) the Gaussian ansatz, and (iii) a two-cumulant truncation of the circular cumulant representation of the original systems dynamics. For the latter we suggest a closure, which makes the truncation, for small noise, a rigorous first-order correction to the Ott-Antonsen ansatz, and simultaneously is a generalization of the Gaussian ansatz. The Kuramoto model with intrinsic noise, and the population of identical noisy active rotators in excitable states with the Kuramoto-type coupling, are considered as examples to test validity of these approximations. For all considered cases, the Gaussian ansatz is found to be more accurate than the Ott-Antonsen one for high-synchrony states only. The two-cumulant approximation is always superior to both other approximations.
We explore chaos in the Kuramoto model with multimodal distributions of the natural frequencies of oscillators and provide a comprehensive description under what conditions chaos occurs. For a natural frequency distribution with $M$ peaks it is typic al that there is a range of coupling strengths such that oscillators belonging to each peak form a synchronized cluster, but the clusters do not globally synchronize. We use collective coordinates to describe the inter- and intra-cluster dynamics, which reduces the Kuramoto model to $2M-1$ degrees of freedom. We show that under some assumptions, there is a time-scale splitting between the slow intracluster dynamics and fast intercluster dynamics, which reduces the collective coordinate model to an $M-1$ degree of freedom rescaled Kuramoto model. Therefore, four or more clusters are required to yield the three degrees of freedom necessary for chaos. However, the time-scale splitting breaks down if a cluster intermittently desynchronizes. We show that this intermittent desynchronization provides a mechanism for chaos for trimodal natural frequency distributions. In addition, we use collective coordinates to show analytically that chaos cannot occur for bimodal frequency distributions, even if they are asymmetric and if intermittent desynchronization occurs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا