ﻻ يوجد ملخص باللغة العربية
A novel possibility of self-organized behaviour of stochastically driven oscillators is presented. It is shown that synchronization by Levy stable processes is significantly more efficient than that by oscillators with Gaussian statistics. The impact of outlier events from the tail of the distribution function was examined by artificially introducing a few additional oscillators with very strong coupling strengths and it is found that remarkably even one such rare and extreme event may govern the long term behaviour of the coupled system. In addition to the multiplicative noise component, we have investigated the impact of an external additive Levy distributed noise component on the synchronisation properties of the oscillators.
We present a method of generation of exact and explicit forms of one-sided, heavy-tailed Levy stable probability distributions g_{alpha}(x), 0 leq x < infty, 0 < alpha < 1. We demonstrate that the knowledge of one such a distribution g_{alpha}(x) suf
A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced following the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the l
We study the effects of Janus oscillators in a system of phase oscillators in which the coupling constants take both positive and negative values. Janus oscillators may also form a cluster when the other ones are ordered and we calculate numerically
We analyze accuracy of different low-dimensional reductions of the collective dynamics in large populations of coupled phase oscillators with intrinsic noise. Three approximations are considered: (i) the Ott-Antonsen ansatz, (ii) the Gaussian ansatz,
We explore chaos in the Kuramoto model with multimodal distributions of the natural frequencies of oscillators and provide a comprehensive description under what conditions chaos occurs. For a natural frequency distribution with $M$ peaks it is typic