ترغب بنشر مسار تعليمي؟ اضغط هنا

NGC 6752 AGB Stars Revisited: I. Improved AGB temperatures remove apparent overionisation of Fe I

133   0   0.0 ( 0 )
 نشر من قبل Simon Campbell
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent study reported a strong apparent depression of Fe I, relative to Fe II, in the AGB stars of NGC 6752. This depression is much greater than that expected from the neglect of non-local thermodynamic equilibrium effects, in particular the dominant effect of overionisation. Here we attempt to reproduce the apparent Fe discrepancy, and investigate differences in reported sodium abundances. We compare in detail the methods and results of the recent study with those of an earlier study of NGC 6752 AGB stars. Iron and sodium abundances are derived using Fe I, Fe II, and Na I lines. Various uncertainties are explored. We reproduce the large Fe I depression found by the recent study, using different observational data and computational tools. Further investigation shows that the degree of the apparent Fe I depression is strongly dependent on the adopted stellar effective temperature. To minimise uncertainties in Fe I we derive temperatures for each star individually using the infrared flux method (IRFM). We find that the $T_{rm{eff}}$ scales used by both the previous studies are cooler, by up to 100 K; such underestimated temperatures amplify the apparent Fe I depression. Our IRFM temperatures result in negligible apparent depression, consistent with theory. We also re-derived sodium abundances and, remarkably, found them to be unaffected by the new temperature scale. [Na/H] in the AGB stars is consistent between all studies. Since Fe is constant, it follows that [Na/Fe] is also consistent between studies, apart from any systematic offsets in Fe. We recommend the use of $(V-K)$ relations for AGB stars. We plan to investigate the effect of the improved temperature scale on other elements, and re-evaluate the subpopulation distributions on the AGB, in the next paper of this series. [abridged]



قيم البحث

اقرأ أيضاً

The Galactic globular cluster NGC 1851 has raised much interest since HST photometry revealed that it hosts a double subgiant branch. Here we report on our homogeneous study into the cyanogen (CN) bandstrengths in the RGB population (17 stars) and AG B population (21 stars) using AAOmega/2dF spectra with R $sim 3000$. We discover that NGC 1851 hosts a quadrimodal distribution of CN bandstrengths in its RGB and AGB populations. This result supports the merger formation scenario proposed for this cluster, such that the CN quadrimodality could be explained by the superposition of two `normal bimodal populations. A small sample overlap with an abundance catalogue allowed us to tentatively explore the relationship between our CN populations and a range of elemental abundances. We found a striking correlation between CN and [O/Na]. We also found that the four CN peaks may be paired -- the two CN-weaker populations being associated with low Ba and the two CN-stronger populations with high Ba. If true then s-process abundances would be a good diagnostic for disentangling the two original clusters in the merger scenario. More observations are needed to confirm the quadrimodality, and also the relationship between the subpopulations. We also report CN results for NGC 288 as a comparison. Our relatively large samples of AGB stars show that both clusters have a bias towards CN-weak AGB populations.
Chemical modelling of AGB outflows is typically focused on either non-thermodynamic equilibrium chemistry in the inner region or photon-driven chemistry in the outer region. We include, for the first time, a comprehensive dust-gas chemistry in our AG B outflow chemical kinetics model, including both dust-gas interactions and grain-surface chemistry. The dust is assumed to have formed in the inner region, and follows an interstellar-like dust-size distribution. Using radiative transfer modelling, we obtain dust temperature profiles for different dust types in an O-rich and a C-rich outflow. We calculate a grid of models, sampling different outflow densities, drift velocities between the dust and gas, and dust types. Dust-gas chemistry can significantly affect the gas-phase composition, depleting parent and daughter species and increasing the abundance of certain daughter species via grain-surface formation followed by desorption/sputtering. Its influence depends on four factors: outflow density, dust temperature, initial composition, and drift velocity. The largest effects are for higher density outflows with cold dust and O-rich parent species, as these species generally have a larger binding energy. At drift velocities larger than $sim 10$ km s$^{-1}$, ice mantles undergo sputtering; however, they are not fully destroyed. Models with dust-gas chemistry can better reproduce the observed depletion of species in O-rich outflows. When including colder dust in the C-rich outflows and adjusting the binding energy of CS, the depletion in C-rich outflows is also better reproduced. To best interpret high-resolution molecular line observations from AGB outflows, dust-gas interactions are needed in chemical kinetics models.
There is ample evidence for strong magnetic fields in the envelopes of (Post-)Asymptotic Giant Branch (AGB) stars as well as supergiant stars. The origin and role of these fields are still unclear. This paper updates the current status of magnetic fi eld observations around AGB, post-AGB stars and describes their possible role during these stages of evolution. The discovery of magnetically aligned dust around a supergiant star is also highlighted. In our search for the origin of the magnetic fields, recent observations show the signatures of possible magnetic activity and rotation, indicating that the magnetic fields might be intrinsic to the AGB stars.
140 - C. Abia , K. Cunha , S. Cristallo 2015
Revised spectroscopic parameters for the HF molecule and a new CN line list in the 2.3 mu region have been recently available, allowing a revision of the F content in AGB stars. AGB carbon stars are the only observationally confirmed sources of fluor ine. Nowadays there is not a consensus on the relevance of AGB stars in its Galactic chemical evolution. The aim of this article is to better constrain the contribution of these stars with a more accurate estimate of their fluorine abundances. Using new spectroscopic tools and LTE spectral synthesis, we redetermine fluorine abundances from several HF lines in the K-band in a sample of Galactic and extragalactic AGB carbon stars of spectral types N, J and SC spanning a wide range of metallicities. On average, the new derived fluorine abundances are systematically lower by 0.33 dex with respect to previous determinations. This may derive from a combination of the lower excitation energies of the HF lines and the larger macroturbulence parameters used here as well as from the new adopted CN line list. Yet, theoretical nucleosynthesis models in AGB stars agree with the new fluorine determinations at solar metallicities. At low metallicities, an agreement between theory and observations can be found by handling in a different way the radiative/convective interface at the base of the convective envelope. New fluorine spectroscopic measurements agree with theoretical models at low and at solar metallicity. Despite this, complementary sources are needed to explain its observed abundance in the solar neighbourhood.
We investigate the star formation history and metallicity of the Local Group irregular dwarf galaxy WLM using wide-field JHK near-infrared imaging, spanning a region of approximately 1 sq. degree, obtained with WFCAM on UKIRT. JHK photometry clearly reveals the tip of the red giant branch, allowing a new estimate of the distance, and allows ready identification of C-type and M-type AGB stars. The C/M ratio was used to produce a surface map of the metallicity distribution which is compared to previous studies. Multi-wavelength spectral energy distributions (SEDs) were constructed for some AGB stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا