ﻻ يوجد ملخص باللغة العربية
Localization-based imaging has revolutionized fluorescence optical microscopy and has also enabled unprecedented ultrasound images of microvascular structures in deep tissues. Herein, we introduce a new concept of localization optoacoustic tomography (LOAT) that employs rapid sequential acquisition of three-dimensional optoacoustic images from flowing absorbing particles. We show that the new method enables breaking through the spatial resolution barrier of acoustic diffraction while further enhancing the visibility of structures under limited-view tomographic conditions. Given the intrinsic sensitivity of optoacoustics to multiple hemodynamic and oxygenation parameters, LOAT may enable new level of performance in studying functional and anatomical alterations of microcirculation.
Optoacoustic image formation is conventionally based upon ultrasound time-of-flight readings from multiple detection positions. Herein, we exploit acoustic scattering to physically encode the position of optical absorbers in the acquired signals, thu
Optical diffraction tomography (ODT) is a three-dimensional (3D) label-free imaging technique. The 3D refractive index distribution of a sample can be reconstructed from multiple two-dimensional optical field images via ODT. Herein, we introduce a te
Acoustic impedance mismatches between soft tissues and bones are known to result in strong aberrations in optoacoustic and ultrasound images. Of particular importance are the severe distortions introduced by the human skull, impeding transcranial bra
Here, we report analysis and summary of research in the field of localization microscopy for optical imaging. We introduce the basic elements of super-resolved localization microscopy methods for PALM and STORM, commonly used both in vivo and in vitr
Localization of single fluorescent molecules is key for physicochemical and biophysical measurements such as single-molecule tracking and super-resolution imaging by single-molecule localization microscopy (SMLM). Recently a series of methods have be