ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous Monitoring of X-ray and Radio Variability in Sagittarius A*

128   0   0.0 ( 0 )
 نشر من قبل Daniel Capellupo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Monitoring of Sagittarius A* from X-ray to radio wavelengths has revealed structured variability --- including X-ray flares --- but it is challenging to establish correlations between them. Most studies have focused on variability in the X-ray and infrared, where variations are often simultaneous, and because long time series at sub-millimeter and radio wavelengths are limited. Previous work on sub-mm and radio variability hints at a lag between X-ray flares and their candidate sub-millimeter or radio counterparts, with the long wavelength data lagging the X-ray. However, there is only one published time lag between an X-ray flare and a possible radio counterpart. Here we report 9 contemporaneous X-ray and radio observations of Sgr A*. We detect significant radio variability peaking $gtrsim$176 minutes after the brightest X-ray flare ever detected from Sgr A*. We also report other potentially associated X-ray and radio variability, with the radio peaks appearing $lesssim$80 minutes after these weaker X-ray flares. Taken at face value, these results suggest that stronger X-ray flares lead to longer time lags in the radio. However, we also test the possibility that the variability at X-ray and radio wavelengths is not temporally correlated. We cross-correlate data from mismatched X-ray and radio epochs and obtain comparable correlations to the matched data. Hence, we find no overall statistical evidence that X-ray flares and radio variability are correlated, underscoring a need for more simultaneous, long duration X-ray--radio monitoring of Sgr A*.



قيم البحث

اقرأ أيضاً

122 - H. Boyce , D. Haggard , G. Witzel 2018
Emission from Sgr A* is highly variable at both X-ray and infrared (IR) wavelengths. Observations over the last ~20 years have revealed X-ray flares that rise above a quiescent thermal background about once per day, while faint X-ray flares from Sgr A* are undetectable below the constant thermal emission. In contrast, the IR emission of Sgr A* is observed to be continuously variable. Recently, simultaneous observations have indicated a rise in IR flux density around the same time as every distinct X-ray flare, while the opposite is not always true (peaks in the IR emission may not be coincident with an X-ray flare). Characterizing the behaviour of these simultaneous X-ray/IR events and measuring any time lag between them can constrain models of Sgr A*s accretion flow and the flare emission mechanism. Using 100+ hours of data from a coordinated campaign between the Spitzer Space Telescope and the Chandra X-ray Observatory, we present results of the longest simultaneous IR and X-ray observations of Sgr A* taken to date. The cross-correlation between the IR and X-ray light curves in this unprecedented dataset, which includes four modest X-ray/IR flares, indicates that flaring in the X-ray may lead the IR by approximately 10-20 minutes with 68% confidence. However, the 99.7% confidence interval on the time-lag also includes zero, i.e., the flaring remains statistically consistent with simultaneity. Long duration and simultaneous multiwavelength observations of additional bright flares will improve our ability to constrain the flare timing characteristics and emission mechanisms, and must be a priority for Galactic Center observing campaigns.
91 - Ohad Shemmer 2017
We report on the second installment of an X-ray monitoring project of seven luminous radio-quiet quasars (RQQs). New {sl Chandra} observations of four of these, at $4.10leq zleq4.35$, yield a total of six X-ray epochs, per source, with temporal basel ines of $sim850-1600$ days in the rest frame. These data provide the best X-ray light curves for RQQs at $z>4$, to date, enabling qualitative investigations of the X-ray variability behavior of such sources for the first time. On average, these sources follow the trend of decreasing variability amplitude with increasing luminosity, and there is no evidence for X-ray variability increasing toward higher redshifts, in contrast with earlier predictions of potential evolutionary scenarios. An ensemble variability structure function reveals that their variability level remains relatively flat across $approx20 - 1000$ days in the rest frame and it is generally lower than that of three similarly luminous RQQs at $1.33leq zleq 2.74$ over the same temporal range. We discuss possible explanations for the increased variability of the lower-redshift subsample and, in particular, whether higher accretion rates play a leading role. Near-simultaneous optical monitoring of the sources at $4.10leq zleq 4.35$ indicates that none is variable on $approx1$-day timescales, although flux variations of up to $sim25$% are observed on $approx100$-day timescales, typical of RQQs at similar redshifts. Significant optical-X-ray spectral slope variations observed in two of these sources are consistent with the levels observed in luminous RQQs and are dominated by X-ray variations.
Variable emission from Sgr~A*, the luminous counterpart to the super-massive black hole at the center of our Galaxy, arises from the innermost portions of the accretion flow. Better characterization of the variability is important for constraining mo dels of the low-luminosity accretion mode powering Sgr~A*, and could further our ability to use variable emission as a probe of the strong gravitational potential in the vicinity of the $4times10^{6}mathrm{M}_{odot}$ black hole. We use the textit{Herschel} Spectral and Photometric Imaging Receiver (SPIRE) to monitor Sgr~A* at wavelengths that are difficult or impossible to observe from the ground. We find highly significant variations at 0.25, 0.35, and 0.5 mm, with temporal structure that is highly correlated across these wavelengths. While the variations correspond to $<$1% changes in the total intensity in the textit{Herschel} beam containing Sgr~A*, comparison to independent, simultaneous observations at 0.85 mm strongly supports the reality of the variations. The lowest point in the light curves, $sim$0.5 Jy below the time-averaged flux density, places a lower bound on the emission of Sgr~A* at 0.25 mm, the first such constraint on the THz portion of the SED. The variability on few hour timescales in the SPIRE light curves is similar to that seen in historical 1.3 mm data, where the longest time series is available, but the distribution of variations in the sub-mm do not show a tail of large-amplitude variations seen at 1.3 mm. Simultaneous X-ray photometry from XMM-Newton shows no significant variation within our observing period, which may explain the lack of very large variations if X-ray and submillimeter flares are correlated.
We report on daily monitoring of the Seyfert galaxy NGC 7469, around 95 GHz and 143 GHz, with the IRAM 30 m radio telescope, and with the Swift X-Ray and UV/Optical telescopes, over an overlapping period of 45 days. The source was observed on 36 days with IRAM, and the flux density in both mm bands was on average $sim 10$ mJy, but varied by $pm50%$, and by up to a factor of 2 between days. The present IRAM variability parameters are consistent with earlier CARMA monitoring, which had only 18 data points. The X-ray light curve of NGC 7469 over the same period spans a factor of 5 in flux with small uncertainties. Similar variability in the mm-band and in the X-rays lends support to the notion of both sources originating in the same physical component of the AGN, likely the accretion disk corona. Simultaneous monitoring in eight UV/optical bands shows much less variability than the mm and X-rays, implying this light originates from a different AGN component, likely the accretion disk itself. We use a tentative 14 day lag of the X-ray light curve with respect to the 95 GHz light curve to speculate on coronal implications. More precise mm-band measurements of a sample of X-ray-variable AGN are needed, preferably also on time scales of less than a day where X-rays vary dramatically, in order to properly test the physical connection between the two bands.
We present the results of an investigation of the X-ray and UV properties of four LINERs observed with Swift, aimed at constructing good S/N and strictly simultaneous UV-X-ray SEDs. In the current paradigm, LINER emission is dominated by geometricall y thick, radiatively inefficient radiation flows (RIAFs) as opposed to radiatively efficient, geometrically thin accretion disks thought to power higher luminosity AGNs (Seyferts and QSOs). However, some recent studies have found more similarities than differences between the SEDs of LINERs and those of more luminous AGNs, suggesting that LINERs are powered by the same mechanisms active in higher luminosity AGNs. Our new observations allow us to test this idea. In particular, XRT affords long and sensitive monitoring of the X-ray emission. We detect significant variability in M81 and, for the first time, in NGC 3998. The maximum amplitude variations over time scales of some hours are 30% in both M81 and NGC 3998. NGC 3998 exhibits a variation of the same amplitude on a time scale of 9 days. M81 varies significantly over 2 years, with a maximum change of a factor 2 in 6 months. The X-ray variability detected in 2 of our sources, and in particular in NGC 3998, puts into question the interpretation of their powering mechanism as an inefficient accretion flow, because one of the characteristics of this model is the lack of variability. The identification of NGC 3998 with a low power AGN appears more viable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا