ﻻ يوجد ملخص باللغة العربية
The precise value of the mean neutron lifetime, $tau_n$, plays an important role in nuclear and particle physics and cosmology. It is a key input for predicting the ratio of protons to helium atoms in the primordial universe and is used to search for new physics beyond the Standard Model of particle physics. There is a 3.9 standard deviation discrepancy between $tau_n$ measured by counting the decay rate of free neutrons in a beam (887.7 $pm$ 2.2 s) and by counting surviving ultracold neutrons stored for different storage times in a material trap (878.5$pm$0.8 s). The experiment described here eliminates loss mechanisms present in previous trap experiments by levitating polarized ultracold neutrons above the surface of an asymmetric storage trap using a repulsive magnetic field gradient so that the stored neutrons do not interact with material trap walls and neutrons in quasi-stable orbits rapidly exit the trap. As a result of this approach and the use of a new in situ neutron detector, the lifetime reported here (877.7 $pm$ 0.7 (stat) +0.4/-0.2 (sys) s) is the first modern measurement of $tau_n$ that does not require corrections larger than the quoted uncertainties.
We report an improved measurement of the free neutron lifetime $tau_{n}$ using the UCN$tau$ apparatus at the Los Alamos Neutron Science Center. We counted a total of approximately $38times10^{6}$ surviving ultracold neutrons (UCN) after storing in UC
The neutron lifetime is important in understanding the production of light nuclei in the first minutes after the big bang and it provides basic information on the charged weak current of the standard model of particle physics. Two different methods h
Neutron lifetime is one of the most important physical constants which determines parameters of the weak interaction and predictions of primordial nucleosynthesis theory. There remains the unsolved problem of a 3.9{sigma} discrepancy between measurem
Ultracold neutron (UCN) storage measurements were made in a trap constructed from a 1.3 T Halbach Octupole PErmanent (HOPE) magnet array aligned vertically, using the TES-port of the PF2 source at the Institut Laue-Langevin. A mechanical UCN valve at
We use data from the Lunar Prospector Neutron Spectrometer to make the second space-based measurement of the free neutron lifetime finding $tau_n=887 pm 14_text{stat}{:^{+7}_{-3:text{syst}}}$ s, which is within 1$sigma$ of the accepted value. This me