ﻻ يوجد ملخص باللغة العربية
When two spacetimes are stitched across a null-shell placed at the horizon of a black hole BMS-supertranslation like soldering freedom arises if one demands the induced metric on the horizon shell should remain invariant under the translations generated by the null generators of the shell. We revisit this phenomenon at the horizon of rotating shells and obtain BMS like symmetries. We further show that superrotation like soldering symmetries in the form of conformal isometries can emerge whenever the degenerate metric of any null hypersurface admits a dependency on null (degenerate direction) coordinate. This kind of conformal isometry can also appear for a null surface situated very close to the horizon of black holes. We also study the intrinsic properties of different kinds of horizon shells considered in this note.
We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together a
We define and study asymptotic Killing and conformal Killing vectors in $d$-dimensional Minkowski, (A)dS, $mathbb{R}times S^{d-1}$ and ${rm AdS}_2times S^{d-2}$. We construct the associated quantum charges for an arbitrary CFT and show they satisfy a
We present the quantum $kappa$-deformation of BMS symmetry, by generalizing the lightlike $kappa$-Poincare Hopf algebra. On the technical level, our analysis relies on the fact that the lightlike $kappa$-deformation of Poincare algebra is given by a
Recently it was conjectured that a certain infinite-dimensional diagonal subgroup of BMS supertranslations acting on past and future null infinity (${mathscr I}^-$ and ${mathscr I}^+$) is an exact symmetry of the quantum gravity ${cal S}$-matrix, and
We propose an extension of the BMS group, which we refer to as Weyl BMS or BMSW for short, that includes, besides super-translations, local Weyl rescalings and arbitrary diffeomorphisms of the 2d sphere metric. After generalizing the Barnich-Troessae