ﻻ يوجد ملخص باللغة العربية
Photosynthetic organisms harvest light energy, utilizing the absorption and energy transfer properties of protein-bound chromophores. Controlling the harvesting efficiency is critical for the optimal function of the photosynthetic apparatus. Here, we show that cyanobacterial light-harvesting antenna may be able to regulate the flow of energy in order to switch reversibly from efficient energy conversion to photo-protective quenching via a structural change. We isolated cyanobacterial light harvesting proteins, phycocyanin and allophycocyanin, and measured their optical properties in solution and in an aggregated-desiccated state. The results indicate that energy band structures are changed, generating a switch between two modes of operation: exciton transfer and quenching; achieved without dedicated carotenoid quenchers. This flexibility can contribute greatly to the large dynamic range of cyanobacterial light harvesting systems.
Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100 fs range. At the same time much slower dynamics have been observed in individual co
Elucidating quantum coherence effects and geometrical factors for efficient energy transfer in photosynthesis has the potential to uncover non-classical design principles for advanced organic materials. We study energy transfer in a linear light-harv
An important determinant of crop yields is the regulation of photosystem II (PSII) light harvesting by energy-dependent quenching (qE). However, the molecular details of excitation quenching have not been quantitatively connected to the PSII yield, w
We discuss our recent theoretical work on vibronic coupling mechanisms in a model energy transfer system in the context of previous 2DEV experiments on a natural light-harvesting system, light-harvesting complex II (LHCII), where vibronic signatures
We predict the enhanced light harvesting of a protein-pigment complex when assembled to a quantum dot (QD) antenna. Our prototypical nanoassembly setup is composed of a Fenna-Mattews-Olson system hosting 8 Bacteriochlorophyll (BChl) a dyes, and a nea