ﻻ يوجد ملخص باللغة العربية
Let K be a knot in the 3-sphere. A slope p/q is said to be characterising for K if whenever p/q surgery on K is homeomorphic, via an orientation-preserving homeomorphism, to p/q surgery on another knot K in the 3-sphere, then K and K are isotopic. It was an old conjecture of Gordon, proved by Kronheimer, Mrowka, Ozsvath and Szabo, that every slope is characterising for the unknot. In this paper, we show that every knot K has infinitely many characterising slopes, confirming a conjecture of Baker and Motegi. In fact, p/q is characterising for K provided |p| is at most |q| and |q| is sufficiently large.
We show that every knot can be realized as a billiard trajectory in a convex prism. This solves a conjecture of Jones and Przytycki.
A generic immersion of a circle into a $2$-sphere is often studied as a projection of a knot; it is called a knot projection. A chord diagram is a configuration of paired points on a circle; traditionally, the two points of each pair are connected by
A salami is a connected, locally finite, weighted graph with non-negative Ollivier Ricci curvature and at least two ends of infinite volume. We show that every salami has exactly two ends and no vertices with positive curvature. We moreover show that
We show that any bounded operator $T$ on a separable, reflexive, infinite-dimensional Banach space $X$ admits a rank one perturbation which has an invariant subspace of infinite dimension and codimension. In the non-reflexive spaces, we show that the
We prove that the geodesic equation for any semi-Riemannian metric of regularity $C^{0,1}$ possesses $C^1$-solutions in the sense of Filippov.