Topological Landau Lattice


الملخص بالإنكليزية

The concept of topological fermions, including Weyl and Dirac fermions, stems from the quantum Hall state induced by a magnetic field, but the definitions and classifications of topological fermions are formulated without using magnetic field. It is unclear whether and how the topological information of topological fermions can be probed once their eigen spectrum is completely rebuilt by a strong magnetic field. In this work, we provide an answer via mapping Landau levels (bands) of topological fermions in $d$ dimensions to the spectrum of a $(d-1)$-dimensional lattice model. The resultant Landau lattice may correspond to a topological insulator, and its topological property can be determined by real-space topological invariants. Accordingly, each zero-energy Landau level (band) inherits the topological stability from the corresponding topological boundary state of the Landau lattice. The theory is demonstrated in detail by transforming 2D Dirac fermions under magnetic fields to the Su-Schrieffer-Heeger models in class AIII, and 3D Weyl fermions to the Chern insulators in class A.

تحميل البحث