ﻻ يوجد ملخص باللغة العربية
PSR B1259-63/LS2883 is a binary system composed of a pulsar and a Be star. The Be star has an equatorial circumstellar disk (CD). The {it Fermi} satellite discovered unexpected gamma-ray flares around 30 days after the last two periastron passages. The origin of the flares remain puzzling. In this work, we explore the possibility that, the GeV flares are consequences of inverse Compton-scattering of soft photons by the pulsar wind. The soft photons are from an accretion disk around the pulsar, which is composed by the matter from CD captured by the pulsars gravity at disk-crossing before the periastron. At the other disk-crossing after the periastron, the density of the CD is not high enough so that accretion is prevented by the pulsar wind shock. This model can reproduce the observed SEDs and light curves satisfactorily.
PSR B1259-63 is a gamma-ray binary system composed of a high spindown pulsar and a massive star. Non-thermal emission up to TeV energies is observed near periastron passage, attributed to emission from high energy e+e- pairs accelerated at the shock
GeV flares from PSR B1259-63/LS 2883 were seen starting around 30 days after the two periastron passages in 2010 and 2014. The flares are clearly delayed compared to the occurrence of the X-ray and TeV flux peaks during the post-periastron disk cross
PSR B1259-63 is a gamma-ray binary system hosting a radio pulsar orbiting around a O9.5Ve star, LS 2883, with a period of ~3.4 years. The interaction of the pulsar wind with the LS 2883 outflow leads to unpulsed broad band emission in the radio, X-ra
The binary system PSR B1259-63/LS 2883 is well sampled in radio, X-rays, and TeV gamma-rays, and shows orbital phase-dependent variability in these frequencies. The first detection of GeV gamma-rays from the system was made around the 2010 periastron
The pulsar/massive star binary system PSR B1259-63 / LS 2883 is one of the best-studied gamma-ray binaries, a class of systems whose bright gamma-ray flaring can provide important insights into high-energy physics. Using the Australian Long Baseline