ﻻ يوجد ملخص باللغة العربية
We compute the magnetic dipole moment (MDM) for massive flavor neutrinos using the neutrino self-energy in a magnetized media. The framework to incorporate neutrino masses is one minimal extension of the Standard Model in which neutrinos are Dirac particles and their masses coming from tiny Yukawa couplings from a second Higgs doublet with a small vacuum expectation value. The computations are carried out by using proper time formalism in the weak field approximation $eB<<m_{e}^{2}$ and assuming normal hierarchy for neutrino masses and sweeping the charged Higgs mass. For $ u_{tau}$, analyses in the neutrino specific scenario indicate magnetic dipole moments greater than the values obtained to the MDM in the SM (with and without magnetic fields) and other flavor conserving models. This fact leading a higher proximity with experimental bounds and so on it is possible to get stronger exclusion limits over new physics parameter space.
A detailed study of the analytic structure of 1-loop self energy graphs for neutral and charged $rho$ mesons is presented at finite temperature and arbitrary magnetic field using the real time formalism of thermal field theory. The imaginary part of
We explore the effects of nonstandard neutrino interactions in the lower components of the solar neutrino spectrum which are predominant by the vacuum oscillations. The recent measurements of Borexino experiment between 2011 and 2015 provide a clean
We study in the framework of relativistic quantum mechanics the evolution of a system of two Dirac neutrinos that mix with each other and have non-vanishing magnetic moments. The dynamics of this system in an external magnetic field is determined by
The recent PVLAS experiment observed the rotation of polarization and the ellipticity when a linearly polarized laser beam passes through a transverse magnetic field. The phenomenon cannot be explained in the conventional QED. We attempt to accommoda
Using numerical simulations of lattice QCD we calculate the effect of an external magnetic field on the equation of state of the quark-gluon plasma. The results are obtained using a Taylor expansion of the pressure with respect to the magnetic field