ترغب بنشر مسار تعليمي؟ اضغط هنا

Colloquium: Nonequilibrium effects in superconductors with a spin-splitting field

218   0   0.0 ( 0 )
 نشر من قبل Tero Heikkila
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the recent progress in understanding the properties of spin-split superconductors under non-equilibrium conditions. Recent experiments and theories demonstrate a rich variety of transport phenomena occurring in devices based on such materials that suggest direct applications in thermoelectricity, low-dissipative spintronics, radiation detection and sensing. We discuss different experimental situations and present a theoretical framework based on quantum kinetic equations. Within this framework we provide an accurate description of the non-equilibrium distribution of charge, spin and energy, which are the relevant non-equilibrium modes, in different hybrid structures. We also review experiments on spin-split superconductors and show how transport measurements reveal the properties of the non-equilibrium modes and their mutual coupling. We discuss in detail spin injection and diffusion and very large thermoelectric effects in spin-split superconductors.



قيم البحث

اقرأ أيضاً

Motivated by the recent proposals for unconventional emergent physics in twisted bilayers of nodal superconductors, we study the peculiarities of the Josephson effect at the twisted interface between $d$-wave superconductors. We demonstrate that for clean interfaces with a twist angle $theta_0$ in the range $0^circ<theta_0<45^circ$ the critical current can exhibit nonmonotonic temperature dependence with a maximum at a nonzero temperature as well as a complex dependence on the twist angle at low temperatures. The former is shown to arise quite generically due to the contributions of the momenta around the gap nodes, which are negative for nonzero twist angles. It is demonstrated that these features reflect the geometry of the Fermi surface and are sensitive to the form of the momentum dependence of the tunneling at the twisted interface. Close to $theta_0=45^circ$ we find that the critical current does not vanish due to Cooper pair cotunneling, which leads to a transition to a time-reversal breaking topological superconducting $d+id$ phase. Weak interface roughness, quasiperiodicity, and inhomogeneity broaden the momentum dependence of the interlayer tunneling leading to a critical current $I_csim cos(2theta_0)$ with $cos(6theta_0)$ corrections. Furthermore, strong disorder at the interface is demonstrated to suppress the time-reversal breaking superconducting phase near $theta_0=45^circ$. Last, we provide a comprehensive theoretical analysis of experiments that can reveal the full current-phase relation for twisted superconductors close to $theta_0=45^circ$. In particular, we demonstrate the emergence of the Fraunhofer interference pattern near $theta_0=45^circ$, while accounting for realistic sample geometries, and show that its temperature dependence can yield unambiguous evidence of Cooper pair cotunneling, necessary for topological superconductivity.
A thin superconducting disk, with radius $R=4xi$ and height $H=xi$, is studied in the presence of an applied magnetic field parallel to its major axis. We study how the boundaries influence the decay of the order parameter near the edges for three-dimensional vortex states.
We propose a mechanism whereby spin supercurrents can be manipulated in superconductor/ferromagnet proximity systems via nonequilibrium spin injection. We find that if a spin supercurrent exists in equilibrium, a nonequilibrium spin accumulation will exert a torque on the spins transported by this current. This interaction causes a new spin supercurrent contribution to manifest out of equilibrium, which is proportional to and polarized perpendicularly to both the injected spins and equilibrium spin current. This is interesting for several reasons: as a fundamental physical effect; due to possible applications as a way to control spin supercurrents; and timeliness in light of recent experiments on spin injection in proximitized superconductors.
The Andreev bound states and charge transport in a Josephson junction between two superconductors with intrinsic exchange fields are studied. We find that for a parallel configuration of the exchange fields in the superconductors the discrete spectru m consists of two pairs of spin-split states. The Josephson current in this case is mainly carried by bound states. In contrast, for the antiparallel configuration we find that there is no spin-splitting of the bound states and that for phase differences smaller than certain critical value there are no bound states at all. Hence the supercurrent is only carried by states in the continuous part of the spectrum. Our predictions can be tested by performing a tunneling spectroscopy of a weak link between two spin-split superconductors.
Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a non-linear effect and usually requires a large voltage. Here we study the electron cooling in hete rostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا