ﻻ يوجد ملخص باللغة العربية
How magnetic energy is injected and released in the solar corona, keeping it heated to several million degrees, remains elusive. Coronal heating generally increases with increasing magnetic field strength. From comparison of a non-linear force-free model of the three-dimensional active-region coronal field to observed extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal loops, despite being rooted in the strongest magnetic flux, are invisible, and (2) the brightest loops have one foot in an umbra or penumbra and the other foot in another sunspots penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidence that magnetoconvection drives solar-stellar coronal heating: evidently the strong umbral field at underline{both} ends quenches the magnetoconvection and hence the heating. Broadly, our results indicate that, depending on the field strength in both feet, the photospheric feet of a coronal loop on any convective star can either engender or quench coronal heating in the loops body.
We present a new version of the Alfven Wave Solar Model (AWSoM), a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfven wave turbulence. Th
The hot solar corona exists because of the balance between radiative and conductive cooling and some counteracting heating mechanism which remains one of the major puzzles in solar physics. The coronal thermal equilibrium is perturbed by magnetoacous
This paper reviews our growing understanding of the physics behind coronal heating (in open-field regions) and the acceleration of the solar wind. Many new insights have come from the last solar cycles worth of observations and theoretical work. Meas
Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observatio
Coronal holes (CHs) are darker than quiet Sun (QS) when observed in coronal channels. This study aims to understand the similarities and differences between CHs and QS in the transition region using the ion{Si}{4}~1394~{AA} line recorded by the Inter