ﻻ يوجد ملخص باللغة العربية
It is known that Boosting can be interpreted as a gradient descent technique to minimize an underlying loss function. Specifically, the underlying loss being minimized by the traditional AdaBoost is the exponential loss, which is proved to be very sensitive to random noise/outliers. Therefore, several Boosting algorithms, e.g., LogitBoost and SavageBoost, have been proposed to improve the robustness of AdaBoost by replacing the exponential loss with some designed robust loss functions. In this work, we present a new way to robustify AdaBoost, i.e., incorporating the robust learning idea of Self-paced Learning (SPL) into Boosting framework. Specifically, we design a new robust Boosting algorithm based on SPL regime, i.e., SPLBoost, which can be easily implemented by slightly modifying off-the-shelf Boosting packages. Extensive experiments and a theoretical characterization are also carried out to illustrate the merits of the proposed SPLBoost.
Curriculum reinforcement learning (CRL) improves the learning speed and stability of an agent by exposing it to a tailored series of tasks throughout learning. Despite empirical successes, an open question in CRL is how to automatically generate a cu
Few-shot learning (FSL) has attracted increasing attention in recent years but remains challenging, due to the intrinsic difficulty in learning to generalize from a few examples. This paper proposes an adaptive margin principle to improve the general
Generalization and adaptation of learned skills to novel situations is a core requirement for intelligent autonomous robots. Although contextual reinforcement learning provides a principled framework for learning and generalization of behaviors acros
General Continual Learning (GCL) aims at learning from non independent and identically distributed stream data without catastrophic forgetting of the old tasks that dont rely on task boundaries during both training and testing stages. We reveal that
A fast and effective motion deblurring method has great application values in real life. This work presents an innovative approach in which a self-paced learning is combined with GAN to deblur image. First, We explain that a proper generator can be u