ﻻ يوجد ملخص باللغة العربية
New time-resolved optical spectroscopic echelle observations of the nova-like cataclysmic variable RW Sextantis were obtained, with the aim to study the properties of emission features in the system. The profile of the H_alpha emission line can be clearly divided into two (`narrow and `wide) components. Similar emission profiles are observed in another nova-like system, 1RXS~J064434.5+33445, for which we also reanalysed the spectral data and redetermined the system parameters. The source of the `narrow, low-velocity component is the irradiated face of the secondary star. We disentangled and removed the `narrow component from the H_alpha profile to study the origin and structure of the region emitting the wide component. We found that the `wide component is not related to the white dwarf or the wind from the central part of the accretion disc, but is emanated from the outer side of the disc. Inspection of literature on similar systems indicates that this feature is common for some other long-period nova-like variables. We propose that the source of the `wide component is an extended, low-velocity region in the outskirts of the opposite side of the accretion disc, with respect to the collision point of the accretion stream and the disc.
We obtained photometric observations of the nova-like cataclysmic variable RW Tri and gathered all available AAVSO and other data from the literature. We determined the system parameters and found their uncertainties using the code developed by us to
We report seven new eclipse timings for the novalike variable 1RXS J064434.5+334451. An analysis of our data, along with all previously available timings (36 published and 16 unpublished), yields a best-fitting linear ephemeris of BJD$_mathrm{ecl} =
We have used a model of magnetic accretion to investigate the accretion flows of magnetic cataclysmic variables. Numerical simulations demonstrate that four types of flow are possible: discs, streams, rings and propellers. The fundamental observable
We have calculated the temperature and density structure of the hot postshock plasma in magnetically confined accretion flows, including the gravitational potential. This avoids the inconsistency of previous calculations which assume that the height
Spectra of 76 known dwarf novae from the LAMOST survey were presented. Most of the objects were observed in quiescence, and about 16 systems have typical outburst spectra. 36 of these systems were observed by SDSS, and most of their spectra are simil