ﻻ يوجد ملخص باللغة العربية
We develop a 3D porous medium model for sap flow within a tree stem, which consists of a nonlinear parabolic partial differential equation with a suitable transpiration source term. Using an asymptotic analysis, we derive approximate series solutions for the liquid saturation and sap velocity for a general class of coefficient functions. Several important non-dimensional parameters are identified that can be used to characterize various flow regimes. We investigate the relative importance of stem aspect ratio versus anisotropy in the sapwood hydraulic conductivity, and how these two effects impact the radial and vertical components of sap velocity. The analytical results are validated by means of a second-order finite volume discretization of the governing equations, and comparisons are drawn to experimental results on Norway spruce trees.
Channel formation and branching is widely seen in physical systems where movement of fluid through a porous structure causes the spatiotemporal evolution of the medium in response to the flow, in turn causing flow pathways to evolve. We provide a sim
We present and derive a novel double-continuum transport model based on pore-scale characteristics. Our approach relies on building a simplified unit cell made up of immobile and mobile continua. We employ a numerically resolved pore-scale velocity d
Flows through porous media can carry suspended and dissolved materials. These sediments may deposit inside the pore-space and alter its geometry. In turn, the changing pore structure modifies the preferential flow paths, resulting in a strong couplin
Gaseous thermal transpiration flows through a rectangular micro-channel are simulated by the direct simulation BGK (DSBGK) method. These flows are rarefied, within the slip and transitional flow regimes, which are beyond many traditional computationa
Rapid and accurate simulation of cerebral aneurysm flow modifications by flow diverters (FDs) can help improving patient-specific intervention and predicting treatment outcome. However, with explicit FD devices being placed in patient-specific aneury