ﻻ يوجد ملخص باللغة العربية
The recent results on net-proton and net-charge multiplicity fluctuations from the beam energy scan program at RHIC have drawn much attention to explore the critical point in the QCD phase diagram. Experimentally measured protons contain contribution from various processes such as secondaries from higher mass resonance decay, production process, and protons from the baryon stopping. Further, these contributions also fluctuate from event to event and can contaminate the dynamical fluctuations due to the critical point. We present the contribution of stopped proton and produced proton fluctuations in the net-proton multiplicity fluctuation in auau collisions measured by STAR experiment at RHIC. The produced net-proton multiplicity fluctuations using cumulants and their ratios are studied as a function collision energies. After removing the stopped proton contribution from the inclusive proton multiplicity distribution, a non-monotonic behavior is even more pronounced in the net-proton fluctuations around sqsn = 19.6 GeV, both in $Ssigma$ and $kappasigma^2$. The present study will be useful to understand the fluctuations originating due to critical point.
We report the first measurements of the kurtosis (kappa), skewness (S) and variance (sigma^2) of net-proton multiplicity (N_p - N_pbar) distributions at midrapidity for Au+Au collisions at sqrt(s_NN) = 19.6, 62.4, and 200 GeV corresponding to baryon
We report the energy and centrality dependence of dynamical kurtosis for Au + Au collisions at $sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV at RHIC. The dynamical kurtosis of net-proton is compared to that of total-proton. The results are also compared with AMPT model calculations.
We report the beam energy (sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (sigma), skewness (S), and kurtosis (kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurem
Event-by-event fluctuations of the net-proton number studied in heavy-ion collisions provide an important means in the search for the conjectured critical end point (CP) in the QCD phase diagram. We propose a phenomenological model in which the fluct
The non-monotonic beam energy dependence of the higher cumulants of net-proton fluctuations is a widely studied signature of the conjectured presence of a critical point in the QCD phase diagram. In this work we study the effect of resonance decays o