ﻻ يوجد ملخص باللغة العربية
A galaxys orientation is one of its most basic observable properties. Astronomers once assumed that galaxies are randomly oriented in space, however it is now clear that some have preferred orientations with respect to their surroundings. Chief among these are giant elliptical galaxies found in the centers of rich galaxy clusters. Numerous studies have shown that the major axes of these galaxies often share the same orientation as the surrounding matter distribution on larger scales. Using Hubble Space Telescope observations of 65 distant galaxy clusters, we show for the first time that similar alignments are seen at earlier epochs when the universe was only one-third its current age. These results suggest that the brightest galaxies in clusters are the product of a special formation history, one influenced by development of the cosmic web over billions of years.
We constrain the evolution of the brightest cluster galaxy plus intracluster light (BCG+ICL) using an ensemble of 42 galaxy groups and clusters that span redshifts of z = 0.05-1.75 and masses of $M_{500,c}=2times10^{13}-10^{15}$ M$_odot$ Specifically
In cold dark matter cosmology, the baryonic components of galaxies are thought to be mixed with and embedded in non-baryonic and non-relativistic dark matter, which dominates the total mass of the galaxy and its dark matter halo. In the local Univers
We report ALMA Early Science observations of the Abell 1835 brightest cluster galaxy (BCG) in the CO (3-2) and CO (1-0) emission lines. We detect 5E10 solar masses of molecular gas within 10 kpc of the BCG. Its velocity width of ~130 km/s FWHM is too
We report the discovery of significant localized structures in the projected two-dimensional (2D) spatial distributions of the Globular Cluster (GC) systems of the ten brightest galaxies in the Virgo Cluster. We use catalogs of GCs extracted from the
Using new and published data, we construct a sample of 160 brightest cluster galaxies (BCGs) spanning the redshift interval 0.03 < z < 1.63. We use this sample, which covers 70% of the history of the universe, to measure the growth in the stellar mas