ترغب بنشر مسار تعليمي؟ اضغط هنا

An optimization method to simultaneously estimate electrophysiology and connectivity in a model central pattern generator

57   0   0.0 ( 0 )
 نشر من قبل Eve Armstrong
 تاريخ النشر 2017
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English
 تأليف Eve Armstrong




اسأل ChatGPT حول البحث

Central pattern generators (CPGs) appear to have evolved multiple times throughout the animal kingdom, indicating that their design imparts a significant evolutionary advantage. Insight into how this design is achieved is hindered by the difficulty inherent in examining relationships among electrophysiological properties of the constituent cells of a CPG and their functional connectivity. That is: experimentally it is challenging to estimate the values of more than two or three of these properties simultaneously. We employ a method of statistical data assimilation (D.A.) to estimate the synaptic weights, synaptic reversal potentials, and maximum conductances of ion channels of the constituent neurons in a multi-modal network model. We then use these estimates to predict the functional mode of activity that the network is expressing. The measurements used are the membrane voltage time series of all neurons in the circuit. We find that these measurements provide sufficient information to yield accurate predictions of the networks associated electrical activity. This experiment can apply directly in a real laboratory using intracellular recordings from a known biological CPG whose structural mapping is known, and which can be completely isolated from the animal. The simulated results in this paper suggest that D.A. might provide a tool for simultaneously estimating tens to hundreds of CPG properties, thereby offering the opportunity to seek possible systematic relationships among these properties and the emergent electrical activity.



قيم البحث

اقرأ أيضاً

Excessively high, neural synchronisation has been associated with epileptic seizures, one of the most common brain diseases worldwide. A better understanding of neural synchronisation mechanisms can thus help control or even treat epilepsy. In this p aper, we study neural synchronisation in a random network where nodes are neurons with excitatory and inhibitory synapses, and neural activity for each node is provided by the adaptive exponential integrate-and-fire model. In this framework, we verify that the decrease in the influence of inhibition can generate synchronisation originating from a pattern of desynchronised spikes. The transition from desynchronous spikes to synchronous bursts of activity, induced by varying the synaptic coupling, emerges in a hysteresis loop due to bistability where abnormal (excessively high synchronous) regimes exist. We verify that, for parameters in the bistability regime, a square current pulse can trigger excessively high (abnormal) synchronisation, a process that can reproduce features of epileptic seizures. Then, we show that it is possible to suppress such abnormal synchronisation by applying a small-amplitude external current on less than 10% of the neurons in the network. Our results demonstrate that external electrical stimulation not only can trigger synchronous behaviour, but more importantly, it can be used as a means to reduce abnormal synchronisation and thus, control or treat effectively epileptic seizures.
113 - Xiaobo Liu , Su Yang 2021
Objectives: Functional connectivity triggered by naturalistic stimulus (e.g., movies) and machine learning techniques provide a great insight in exploring the brain functions such as fluid intelligence. However, functional connectivity are considered to be multi-layered, while traditional machine learning based on individual models not only are limited in performance, but also fail to extract multi-dimensional and multi-layered information from brain network. Methods: In this study, inspired by multi-layer brain network structure, we propose a new method namely Weighted Ensemble-model and Network Analysis, which combines the machine learning and graph theory for improved fluid intelligence prediction. Firstly, functional connectivity analysis and graphical theory were jointly employed. The functional connectivity and graphical indices computed using the preprocessed fMRI data were then all fed into auto-encoder parallelly for feature extraction to predict the fluid intelligence. In order to improve the performance, tree regression and ridge regression model were automatically stacked and fused with weighted values. Finally, layers of auto-encoder were visualized to better illustrate the connectome patterns, followed by the evaluation of the performance to justify the mechanism of brain functions. Results: Our proposed methods achieved best performance with 3.85 mean absolute deviation, 0.66 correlation coefficient and 0.42 R-squared coefficient, outperformed other state-of-the-art methods. It is also worth noting that, the optimization of the biological pattern extraction was automated though the auto-encoder algorithm. Conclusion: The proposed method not only outperforming the state-of-the-art reports, but also able to effectively capturing the biological patterns from functional connectivity during naturalistic movies state for potential clinical explorations.
67 - Eve Armstrong 2017
A method of data assimilation (DA) is employed to estimate electrophysiological parameters of neurons simultaneously with their synaptic connectivity in a small model biological network. The DA procedure is cast as an optimization, with a cost functi on consisting of both a measurement error and a model error term. An iterative reweighting of these terms permits a systematic method to identify the lowest minimum, within a local region of state space, on the surface of a non-convex cost function. In the model, two sets of parameter values are associated with two particular functional modes of network activity: simultaneous firing of all neurons, and a pattern-generating mode wherein the neurons burst in sequence. The DA procedure is able to recover these modes if: i) the stimulating electrical currents have chaotic waveforms, and ii) the measurements consist of the membrane voltages of all neurons in the circuit. Further, this method is able to prune a model of unnecessarily high dimensionality to a representation that contains the maximum dimensionality required to reproduce the provided measurements. This paper offers a proof-of-concept that DA has the potential to inform laboratory designs for estimating properties in small and isolatable functional circuits.
The noninvasive procedures for neural connectivity are under questioning. Theoretical models sustain that the electromagnetic field registered at external sensors is elicited by currents at neural space. Nevertheless, what we observe at the sensor sp ace is a superposition of projected fields, from the whole gray-matter. This is the reason for a major pitfall of noninvasive Electrophysiology methods: distorted reconstruction of neural activity and its connectivity or leakage. It has been proven that current methods produce incorrect connectomes. Somewhat related to the incorrect connectivity modelling, they disregard either Systems Theory and Bayesian Information Theory. We introduce a new formalism that attains for it, Hidden Gaussian Graphical State-Model (HIGGS). A neural Gaussian Graphical Model (GGM) hidden by the observation equation of Magneto-encephalographic (MEEG) signals. HIGGS is equivalent to a frequency domain Linear State Space Model (LSSM) but with sparse connectivity prior. The mathematical contribution here is the theory for high-dimensional and frequency-domain HIGGS solvers. We demonstrate that HIGGS can attenuate the leakage effect in the most critical case: the distortion EEG signal due to head volume conduction heterogeneities. Its application in EEG is illustrated with retrieved connectivity patterns from human Steady State Visual Evoked Potentials (SSVEP). We provide for the first time confirmatory evidence for noninvasive procedures of neural connectivity: concurrent EEG and Electrocorticography (ECoG) recordings on monkey. Open source packages are freely available online, to reproduce the results presented in this paper and to analyze external MEEG databases.
The thalamus consists of several histologically and functionally distinct nuclei increasingly implicated in brain pathology and important for treatment, motivating the need for development of fast and accurate thalamic segmentation. The contrast betw een thalamic nuclei as well as between the thalamus and surrounding tissues is poor in T1 and T2 weighted magnetic resonance imaging (MRI), inhibiting efforts to date to segment the thalamus using standard clinical MRI. Automatic segmentation techniques have been developed to leverage thalamic features better captured by advanced MRI methods, including magnetization prepared rapid acquisition gradient echo (MP-RAGE) , diffusion tensor imaging (DTI), and resting state functional MRI (fMRI). Despite operating on fundamentally different image features, these methods claim a high degree of agreement with the Morel stereotactic atlas of the thalamus. However, no comparison has been undertaken to compare the results of these disparate segmentation methods. We have implemented state-of-the-art structural, diffusion, and functional imaging-based thalamus segmentation techniques and used them on a single set of subjects. We present the first systematic qualitative and quantitative comparison of these methods. We found that functional connectivity-based parcellation exhibited a close correspondence with structural parcellation on the basis of qualitative concordance with the Morel thalamic atlas as well as the quantitative measures of Dice scores and volumetric similarity index.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا