ﻻ يوجد ملخص باللغة العربية
Controlling quantum critical phenomena in strongly correlated electron systems, which emerge in the neighborhood of a quantum phase transition, is a major challenge in modern condensed matter physics. Quantum critical phenomena are generated from the delicate balance between long-range order and its quantum fluctuation. So far, the nature of quantum phase transitions has been investigated by changing a limited number of external parameters such as pressure and magnetic field. We propose a new approach for investigating quantum criticality by changing the strength of quantum fluctuation that is controlled by the dimensional crossover in metallic quantum well (QW) structures of strongly correlated oxides. With reducing layer thickness to the critical thickness of metal-insulator transition, crossover from a Fermi liquid to a non-Fermi liquid has clearly been observed in the metallic QW of SrVO$_3$ by textit{in situ} angle-resolved photoemission spectroscopy. Non-Fermi liquid behavior with the critical exponent ${alpha} = 1$ is found to emerge in the two-dimensional limit of the metallic QW states, indicating that a quantum critical point exists in the neighborhood of the thickness-dependent Mott transition. These results suggest that artificial QW structures provide a unique platform for investigating novel quantum phenomena in strongly correlated oxides in a controllable fashion.
$In$ $situ$ angle-resolved photoemission spectroscopy (ARPES) has been performed on SrVO$_3$ ultrathin films, which show metallic quantum well (QW) states, to unveil the origin of the anomalous mass enhancement in the QW subbands. The line-shape anal
Quantum embedding theories are promising approaches to investigate strongly-correlated electronic states of active regions of large-scale molecular or condensed systems. Notable examples are spin defects in semiconductors and insulators. We present a
We have systematically investigated substrate-strain effects on the electronic structures of two representative Sr-iridates, a correlated-insulator Sr$_2$IrO$_4$ and a metal SrIrO$_3$. Optical conductivities obtained by the emph{ab initio} electronic
The Ruddlesden-Popper (RP) series of iridates (Srn+1IrnO3n+1) have been the subject of much recent attention due to the anticipation of emergent physics arising from the cooperative action of spin-orbit (SO) driven band splitting and Coulomb interact
Correlations between particles can lead to subtle and sometimes counterintuitive phenomena. We analyze one such case, occurring during the sudden expansion of fermions in a lattice when the initial state has a strong admixture of double occupancies.