ﻻ يوجد ملخص باللغة العربية
Our aim is to evaluate fundamental parameters from the analysis of the electromagnetic spectra of stars. We may use $10^3$-$10^5$ spectra; each spectrum being a vector with $10^2$-$10^4$ coordinates. We thus face the so-called curse of dimensionality. We look for a method to reduce the size of this data-space, keeping only the most relevant information.As a reference method, we use principal component analysis (PCA) to reduce dimensionality. However, PCA is an unsupervised method, therefore its subspace was not consistent with the parameter. We thus tested a supervised method based on Sliced Inverse Regression (SIR), which provides a subspace consistent with the parameter. It also shares analogies with factorial discriminant analysis: the method slices the database along the parameter variation, and builds the subspace which maximizes the inter-slice variance, while standardizing the total projected variance of the data. Nevertheless the performances of SIR were not satisfying in standard usage, because of the non-monotonicity of the unknown function linking the data to the parameter and because of the noise propagation. We show that better performances can be achieved by selecting the most relevant directions for parameter inference. Preliminary tests are performed on synthetic pseudo-line profiles plus noise. Using one direction, we show that compared to PCA, the error associated with SIR is 50$%$ smaller on a non-linear parameter, and 70$%$ smaler on a linear parameter. Moreover, using a selected direction, the error is 80$%$ smaller for a non-linear parameter, and 95$%$ smaller for a linear parameter.
The program package SME (Spectroscopy Made Easy), designed to perform an analysis of stellar spectra using spectral fitting techniques, was updated due to adding new functions (isotopic and hyperfine splittins) in VALD and including grids of NLTE cal
We present a new gravitational lens modelling technique designed to model high-resolution interferometric observations with large numbers of visibilities without the need to pre-average the data in time or frequency. We demonstrate the accuracy of th
In the near future we will have ground- and space-based telescopes that are designed to observe and characterize Earth-like planets. While attention is focused on exoplanets orbiting main sequence stars, more than 150 exoplanets have already been det
Given that low-mass stars have intrinsically low luminosities at optical wavelengths and a propensity for stellar activity, it is advantageous for radial velocity (RV) surveys of these objects to use near-infrared (NIR) wavelengths. In this work we d
We present an automated statistical method that uses medium-resolution spectroscopic observations of a set of stars to select those that show evidence of possessing significant amounts of neutron-capture elements. Our tool was tested against a sample