ترغب بنشر مسار تعليمي؟ اضغط هنا

The fragmentation instability of a black hole with $f(R)$ global monopole under GUP

99   0   0.0 ( 0 )
 نشر من قبل Hongbo Cheng
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The fragmentation of black hole containing $f(R)$ global monopole under GUP is studied. We focus on that the black hole breaks into two parts. We derive the entropies of the initial black hole and the broken parts while the generalization of Heisenbergs uncertainty principle is introduced. We find that the $f(R)$ global monopole black hole keeps stable instead of breaking because the entropy difference is negative without the generalization. The fragmentation of the black hole will happen if the black hole entropies are limited by the GUP and the considerable deviation from the general relativity leads the case that the mass of one fragmented black hole is extremely small and the other one is extremely large.



قيم البحث

اقرأ أيضاً

220 - Hongbo Cheng , Yue Zhong 2019
We consider the evolution of black hole involving an $f(R)$ global monopole based on the Extended Uncertainty Principle (EUP). The black hole evolutions refer to the instability due to the Parikh-Kraus-Wilczeck tunneling radiation or fragmentation. I t is found that the EUP corrections make the entropy difference larger to encourage the black hole to radiate more greatly. We also show that the appearance of the EUP effects result in the black holes division. The influence from global monopole and the revision of general relativity can also adjust the black hole evolution simultaneously, but can not change the final result that the black hole will not be stable because of the EUPs effects.
The Parikh-Kraus-Wilczeck tunneling radiation of black hole involving a $f(R)$ global monopole is considered based on the generalized uncertainty principle. The influences from global monopole, $f(R)$ gravity and the corrections to the uncertainty ap pear in the expression of black hole entropy difference. It is found that the global monopole and the revision of general relativity both hinder the black hole from emitting the photons. The two parts as corrections to the uncertainty make the entropy difference of this kind of black hole larger or smaller respectively.
We analyze the thermodynamics of a black hole in a region that contains a global monopole in the framework of a particular class of a f(R) gravity. Specifically, we study the case in which df(R)/dR = F(R) is a power law function of the radial coordin ate of the monopole spacetime, i.e., F(r) = 1 + psi_n r^n, where psi_n is the fine-tuned parameter corresponding to the f(R) gravity. We obtain explicit expressions for the local thermodynamic quantities of the black hole as a function of the event horizon, the parameter describing the monopole and the measurable corrections due to the f(R) theory modifications of the General Relativity. We also discussed the implications of the particular case of n=2, where the parameter psi_2 can be related to a positive cosmological constant, that in monopole presence is characterized by a non-trivial topology observed as a deficit solid angle.
In this paper the $f(R)$ global monopole is reexamined. We provide an exact solution for the modified field equations in the presence of a global monopole for regions outside its core, generalizing previous results. Additionally, we discuss some part icular cases obtained from this solution. We consider a setup consisting of a possible Schwarzschild black hole that absorbs the topological defect, giving rise to a static black hole endowed with a monopoles charge. Besides, we demonstrate how the asymptotic behavior of the Higgs field far from the monopoles core is shaped by a class of spacetime metrics which includes those ones analyzed here. In order to assess the gravitational properties of this system, we analyse the geodesic motion of both massive and massless test particles moving in the vicinity of such configuration. For the material particles we set the requirements they have to obey in order to experience stable orbits. On the other hand, for the photons we investigate how their trajectories are affected by the gravitational field of this black hole.
Hawking flux from the Schwarzschild black hole with a global monopole is obtained by using Robinson and Wilczeks method. Adopting a dimension reduction technique, the effective quantum field in the (3+1)--dimensional global monopole background can be described by an infinite collection of the (1+1)--dimensional massless fields if neglecting the ingoing modes near the horizon, where the gravitational anomaly can be cancelled by the (1+1)--dimensional black body radiation at the Hawking temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا