ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculation of time resolution of the J-PET tomograph using the Kernel Density Estimation

116   0   0.0 ( 0 )
 نشر من قبل Michal Silarski
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we estimate the time resolution of the J-PET scanner built from plastic scintillators. We incorporate the method of signal processing using the Tikhonov regularization framework and the Kernel Density Estimation method. We obtain simple, closed-form analytical formulas for time resolutions. The proposed method is validated using signals registered by means of the single detection unit of the J-PET tomograph built out from 30 cm long plastic scintillator strip. It is shown that the experimental and theoretical results, obtained for the J-PET scanner equipped with vacuum tube photomultipliers, are consistent.



قيم البحث

اقرأ أيضاً

114 - P. Moskal , O. Rundel , D. Alfs 2016
Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the 2 x 5 configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the 2 x 5 matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of $approx$ 0.170 ns for 15 cm axial field-of-view (AFOV) and $approx$ 0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.
A detection system of the conventional PET tomograph is set-up to record data from e+ e- annihilation into two photons with energy of 511 keV, and it gives information on the density distribution of a radiopharmaceutical in the body of the object. In this paper we explore the possibility of performing the three gamma photons imaging based on ortho-positronium annihilation, as well as the possibility of positronium mean lifetime imaging with the J-PET tomograph constructed from plastic scintillators. For this purposes simulations of the ortho-positronium formation and its annihilation into three photons were performed taking into account distributions of photons momenta as predicted by the theory of quantum electrodynamics and the response of the J-PET tomograph. In order to test the proposed ortho-positronium lifetime image reconstruction method, we concentrate on the decay of the ortho-positronium into three photons and applications of radiopharmaceuticals labeled with isotopes emitting a prompt gamma quantum. The proposed method of imaging is based on the determination of hit-times and hit-positions of registered photons which enables the reconstruction of the time and position of the annihilation point as well as the lifetime of the ortho-positronium on an event-by-event basis. We have simulated the production of the positronium in a cylindrical phantom composed of a set of different materials in which the ortho-positronium lifetime varied from 2.0 ns to 3.0 ns, as expected for ortho-positronium created in the human body. The presented reconstruction method for total-body J-PET like detector allows to achieve a mean lifetime resolution of about 40 ps. Recent Positron Annihilation Lifetime Spectroscopy measurements of cancerous and healthy uterine tissues show that this sensitivity may allow to study the morphological changes in cell structures.
The novel whole-body PET system based on plastic scintillators is developed by the {J-PET} Collaboration. It consists of plastic scintillator strips arranged axially in the form of a cylinder, allowing the cost-effective construction of the total-bod y PET. In order to determine properties of the scanner prototype and optimize its geometry, advanced computer simulations using the GATE software were performed. The spatial resolution, the sensitivity, the scatter fraction and the noise equivalent count rate were estimated according to the NEMA norm as a function of the length of the tomograph, number of the detection layers, diameter of the tomographic chamber and for various types of the applied readout. For the single-layer geometry with the diameter of 85 cm, strip length of 100 cm, cross-section of 4 mm x 20 mm and silicon photomultipliers with the additional layer of wavelength shifter as the readout, the spatial resolution (FWHM) in the centre of the scanner is equal to 3 mm (radial, tangential) and 6 mm (axial). For the analogous double-layer geometry with the same readout, diameter and scintillator length, with the strip cross-section of 7 mm x 20 mm, the NECR peak of 300 kcps was reached at 40 kBq/cc activity concentration, the scatter fraction is estimated to about 35% and the sensitivity at the centre amounts to 14.9 cps/kBq. Sensitivity profiles were also determined.
The Jagiellonian Positron Emission Tomograph (J-PET) is the first PET built from plastic scintillators. J-PET prototype consists of 192 detection modules arranged axially in three layers forming a cylindrical diagnostic chamber with the inner diamete r of 85 cm and the axial field-of-view of 50 cm. An axial arrangement of long strips of plastic scintillators, their small light attenuation, superior timing properties, and relative ease of the increase of the axial field-of-view opens promising perspectives for the cost effective construction of the whole-body PET scanner, as well as construction of MR and CT compatible PET inserts. Present status of the development of the J-PET tomograph will be presented and discussed.
J-PET is the first positron-emission tomograph (PET) constructed from plastic scintillators. It was optimized for the detection of photons from electron-positron annihilation. Such photons, having an energy of 511 keV, interact with electrons in plas tic scintillators predominantly via the Compton effect. Compton scattering is at most probable at an angle orthogonal to the electric field vector of the interacting photon. Thus registration of multiple photon scatterings with J-PET enables to determine the polarization of the annihilation photons. In this contribution we present estimates on the physical limitation in the accuracy of the polarization determination of $511$~keV photons with the J-PET detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا