ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence analysis of quasi-Monte Carlo sampling for quantile and expected shortfall

311   0   0.0 ( 0 )
 نشر من قبل Zhijian He
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantiles and expected shortfalls are usually used to measure risks of stochastic systems, which are often estimated by Monte Carlo methods. This paper focuses on the use of quasi-Monte Carlo (QMC) method, whose convergence rate is asymptotically better than Monte Carlo in the numerical integration. We first prove the convergence of QMC-based quantile estimates under very mild conditions, and then establish a deterministic error bound of $O(N^{-1/d})$ for the quantile estimates, where $d$ is the dimension of the QMC point sets used in the simulation and $N$ is the sample size. Under certain conditions, we show that the mean squared error (MSE) of the randomized QMC estimate for expected shortfall is $o(N^{-1})$. Moreover, under stronger conditions the MSE can be improved to $O(N^{-1-1/(2d-1)+epsilon})$ for arbitrarily small $epsilon>0$.



قيم البحث

اقرأ أيضاً

We introduce and study the main properties of a class of convex risk measures that refine Expected Shortfall by simultaneously controlling the expected losses associated with different portions of the tail distribution. The corresponding adjusted Exp ected Shortfalls quantify risk as the minimum amount of capital that has to be raised and injected into a financial position $X$ to ensure that Expected Shortfall $ES_p(X)$ does not exceed a pre-specified threshold $g(p)$ for every probability level $pin[0,1]$. Through the choice of the benchmark risk profile $g$ one can tailor the risk assessment to the specific application of interest. We devote special attention to the study of risk profiles defined by the Expected Shortfall of a benchmark random loss, in which case our risk measures are intimately linked to second-order stochastic dominance.
We describe and analyze some Monte Carlo methods for manifolds in Euclidean space defined by equality and inequality constraints. First, we give an MCMC sampler for probability distributions defined by un-normalized densities on such manifolds. The s ampler uses a specific orthogonal projection to the surface that requires only information about the tangent space to the manifold, obtainable from first derivatives of the constraint functions, hence avoiding the need for curvature information or second derivatives. Second, we use the sampler to develop a multi-stage algorithm to compute integrals over such manifolds. We provide single-run error estimates that avoid the need for multiple independent runs. Computational experiments on various test problems show that the algorithms and error estimates work in practice. The method is applied to compute the entropies of different sticky hard sphere systems. These predict the temperature or interaction energy at which loops of hard sticky spheres become preferable to chains.
Probability measures supported on submanifolds can be sampled by adding an extra momentum variable to the state of the system, and discretizing the associated Hamiltonian dynamics with some stochastic perturbation in the extra variable. In order to a void biases in the invariant probability measures sampled by discretizations of these stochastically perturbed Hamiltonian dynamics, a Metropolis rejection procedure can be considered. The so-obtained scheme belongs to the class of generalized Hybrid Monte Carlo (GHMC) algorithms. We show here how to generalize to GHMC a procedure suggested by Goodman, Holmes-Cerfon and Zappa for Metropolis random walks on submanifolds, where a reverse projection check is performed to enforce the reversibility of the algorithm for large timesteps and hence avoid biases in the invariant measure. We also provide a full mathematical analysis of such procedures, as well as numerical experiments demonstrating the importance of the reverse projection check on simple toy examples.
75 - Zhijian He 2017
This paper studies the rate of convergence for conditional quasi-Monte Carlo (QMC), which is a counterpart of conditional Monte Carlo. We focus on discontinuous integrands defined on the whole of $R^d$, which can be unbounded. Under suitable conditio ns, we show that conditional QMC not only has the smoothing effect (up to infinitely times differentiable), but also can bring orders of magnitude reduction in integration error compared to plain QMC. Particularly, for some typical problems in options pricing and Greeks estimation, conditional randomized QMC that uses $n$ samples yields a mean error of $O(n^{-1+epsilon})$ for arbitrarily small $epsilon>0$. As a by-product, we find that this rate also applies to randomized QMC integration with all terms of the ANOVA decomposition of the discontinuous integrand, except the one of highest order.
In mathematical finance and other applications of stochastic processes, it is frequently the case that the characteristic function may be known but explicit forms for density functions are not available. The simulation of any distribution is greatly facilitated by a knowledge of the quantile function, by which uniformly distributed samples may be converted to samples of the given distribution. This article analyzes the calculation of a quantile function direct from the characteristic function of a probability distribution, without explicit knowledge of the density. We form a non-linear integro-differential equation that despite its complexity admits an iterative solution for the power series of the quantile about the median. We give some examples including tail models and show how to generate C-code for examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا