ترغب بنشر مسار تعليمي؟ اضغط هنا

The multi-resonant Lugiato-Lefever model

85   0   0.0 ( 0 )
 نشر من قبل Matteo Conforti
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new model describing multiple resonances in Kerr optical cavities. It perfectly agrees quantitatively with the Ikeda map and predicts complex phenomena such as super cavity solitons and coexistence of multiple nonlinear states.



قيم البحث

اقرأ أيضاً

It has been recently uncovered that coherent structures in microresonators such as cavity solitons and patterns are intimately related to Kerr frequency combs. In this work, we present a general analysis of the regions of existence and stability of c avity solitons and patterns in the Lugiato-Lefever equation, a mean-field model that finds applications in many different nonlinear optical cavities. We demonstrate that the rich dynamics and coexistence of multiple solutions in the Lugiato-Lefever equation are of key importance to understanding frequency comb generation. A detailed map of how and where to target stable Kerr frequency combs in the parameter space defined by the frequency detuning and the pump power is provided. Moreover, the work presented also includes the organization of various dynamical regimes in terms of bifurcation points of higher co-dimension in regions of parameter space that were previously unexplored in the Lugiato-Lefever equation. We discuss different dynamical instabilities such as oscillations and chaotic regimes.
The model, that is usually called Lugiato-Lefever equation (LLE), was introduced in 1987 with the aim of providing a paradigm for dissipative structure and pattern formation in nonlinear optics. This model, describing a driven, detuned and damped non linear Schroedinger equation, gives rise to dissipative spatial and temporal solitons. Recently, the rather idealized conditions, assumed in the LLE, have materialized in the form of continuous wave driven optical microresonators, with the discovery of temporal dissipative Kerr solitons (DKS). These experiments have revealed that the LLE is a perfect and exact description of Kerr frequency combs - first observed in 2007, i.e. 20 years after the original formulation of the LLE. - and in particular describe soliton states. Observed to spontaneously form in Kerr frequency combs in crystalline microresonators in 2013, such DKS are preferred state of operation, offering coherent and broadband optical frequency combs, whose bandwidth can be extended exploiting soliton induced broadening phenomena. Combined with the ability to miniaturize and integrate on chip, microresonator based soliton Kerr frequency combs have already found applications in self-referenced frequency combs, dual-comb spectroscopy, frequency synthesis, low noise microwave generation, laser frequency ranging, and astrophysical spectrometer calibration, and have the potential to make comb technology ubiquitous. As such, pattern formation in driven, dissipative nonlinear optical systems is becoming the central Physics of soliton micro-comb technology.
A generalized Lugiato-Lefever equation is numerically solved with a Newton-Raphson method to model Kerr frequency combs. We obtain excellent agreement with past experiments, even for an octave-spanning comb. Simulations are much faster than with any other technique despite including more modes than ever before. Our study reveals that Kerr combs are associated with temporal cavity solitons and dispersive waves, and opens up new avenues for the understanding of Kerr comb formation.
The damped driven nonlinear Schrodinger equation (NLSE) has been used to understand a range of physical phenomena in diverse systems. Studying this equation in the context of optical hyper-parametric oscillators in anomalous-dispersion dissipative ca vities, where NLSE is usually referred to as the Lugiato-Lefever equation (LLE), we are led to a new, reduced nonlinear oscillator model which uncovers the essence of the spontaneous creation of sharply peaked pulses in optical resonators. We identify attracting solutions for this model which correspond to stable cavity solitons and Turing patterns, and study their degree of stability. The reduced model embodies the fundamental connection between mode synchronization and spatiotemporal pattern formation, and represents a novel class of self-synchronization processes in which coupling between nonlinear oscillators is governed by energy and momentum conservation.
The regions of existence and stability of dark solitons in the Lugiato-Lefever model with normal chromatic dispersion are described. These localized states are shown to be organized in a bifurcation structure known as collapsed snaking implying the p resence of a region in parameter space with a finite multiplicity of dark solitons. For some parameter values dynamical instabilities are responsible for the appearance of oscillations and temporal chaos. The importance of the results for understanding frequency comb generation in microresonators is emphasized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا