ﻻ يوجد ملخص باللغة العربية
Ferromagnets are key materials for sensing and memory applications. In contrast, antiferromagnets that represent the more common form of magnetically ordered materials, have so far found less practical application beyond their use for establishing reference magnetic orientations via exchange bias. This might change in the future due to the recent progress in materials research and discoveries of antiferromagnetic spintronic phenomena suitable for device applications. Experimental demonstrations of the electrical switching and electrical detection of the Neel order open a route towards memory devices based on antiferromagnets. Apart from the radiation and magnetic-field hardness, memory cells fabricated in antiferromagnets are inherently multilevel which could be used for neuromorphic computing. Switching speeds attainable in antiferromagnets far exceed those of the ferromagnetic and semiconductor memory technologies. Here we review the recent progress in electronic spin-transport and spin-torque phenomena in antiferromagnets that are dominantly of the relativistic quantum mechanics origin. We discuss their utility in pure antiferromagnetic or hybrid ferromagnetic/antiferromagnetic memory devices
Control and detection of spin order in ferromagnets is the main principle allowing storing and reading of magnetic information in nowadays technology. The large class of antiferromagnets, on the other hand, is less utilized, despite its very appealin
This focused issue attempts to provide a comprehensive introduction into the field of antiferromagnetic spintronics. Apart from the brief overview below, it features five review articles. The intention is to cover in a coherent and complementary way
Spin transport of magnonic excitations in uniaxial insulating antiferromagnets (AFs) is investigated. In linear response to spin biasing and a temperature gradient, the spin transport properties of normal-metal--insulating antiferromagnet--normal-met
Ferromagnetic spin-valves and tunneling junctions are crucial for spintronics applications and are one of the most fundamental spintronics devices. Motivated by the potential unique advantages of antiferromagnets for spintronics, we theoretically stu
Antiferromagnetic insulators (AFIs) are of significant interest due to their potential to develop next-generation spintronic devices. One major effort in this emerging field is to harness AFIs for long-range spin information communication and storage